首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Parasitic plants in the Orobanchaceae invade host plant roots through root organs called haustoria. Parasite roots initiate haustorium development when exposed to specific secondary metabolites that are released into the rhizosphere by host plant roots. While molecular approaches are increasingly being taken to understand the genetic mechanism underlying these events, a limitation has been the lack of a transformation system for parasitic plants. Since the haustorium development occurs in roots of Orobanchaceae, root cultures may be suitable material for transient or stable transformation experiments. To this end, root cultures were obtained from explants, and subsequently calluses, from the hemiparasitic plant Triphysaria versicolor. The cultured roots retained their competence to form haustoria when exposed to host roots, host root exudates, or purified haustorium-inducing factors. The root culture haustoria invaded host roots and initiated a vascular continuity between the parasite and host roots. The ontogeny of haustoria development on root cultures was indistinguishable from that on seedlings roots. Root cultures should provide useful material for molecular studies of haustorium development.  相似文献   

2.
3.
岳鑫  陈贵林 《植物研究》2020,40(6):846-854
专性寄生植物锁阳以干燥肉质茎入药,为常用中药材。在锁阳的生活史中,需要经历种子萌发、芽管状器管伸长、初生吸器形成、次生吸器形成等过程,其中种子萌发和初生吸器形成是锁阳完成生活史的最基本条件。目前,触发锁阳种子萌发、初生吸器形成的植物生长调节物质的阈值和种类并不清楚,导致人工调控锁阳生活史困难及栽培收益不高。本论文运用组织培养方法,研究赤霉素、生长素和细胞分类素等多种激素交互作用对锁阳种子萌发和吸器形成的影响。研究结果显示:(1)多种激素的共同作用促进锁阳球形原胚的发育。(2)B5培养基添加1.0 mg·L-1 2,4-D,0.5 mg·L-1 KT,1.0 mg·L-1 GA3可以高效诱导锁阳种子愈伤组织形成,愈伤诱导率达13.7%±3.1%。(3)B5培养基添加0.5 mg·L-1 2,4-D,0.25 mg·L-1 KT可以高效诱导锁阳愈伤组织分化初生吸器,一些初生吸器继续分化成芽管状气管,延伸3~4 cm后,顶端膨大,形成新的初生吸器。本论文研究结果可为进一步研究锁阳种子萌发、初生吸器形成的内源激素变化规律及发生机制研究奠定基础。  相似文献   

4.
Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. In this study, we examined the response of SQR to sulfide exposure (25, 50, and 150 μM) at mRNA, protein, and enzyme activity levels in the body wall and hindgut of the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The results revealed SQR mRNA expression during sulfide exposure in the body wall and hindgut increased in a time- and concentration-dependent manner that increased significantly at 12 h and continuously increased with time. At the protein level, SQR expression in the two tissues showed a time-dependent relationship that increased significantly at 12 h in 50 μM sulfide and 6 h in 150 μM, and then continued to increase with time while no significant increase appeared after 25 μM sulfide exposure. SQR enzyme activity in both tissues increased significantly in a time-dependent manner after 50 μM sulfide exposure. We concluded that SQR expression could be induced by sulfide exposure and that the two tissues studied have dissimilar sulfide metabolic patterns. A U. unicinctus sulfide-induced detoxification mechanism was also discussed.  相似文献   

5.
The nonhemolytic enterotoxin (Nhe) is known as a major pathogenicity factor for the diarrheal type of food poisoning caused by Bacillus cereus. The Nhe complex consists of NheA, NheB and NheC, all of them required to reach maximum cytotoxicity following a specific binding order on cell membranes. Here we show that complexes, formed between NheB and NheC under natural conditions before targeting the host cells, are essential for toxicity in Vero cells. To enable detection of NheC and its interaction with NheB, monoclonal antibodies against NheC were established and characterized. The antibodies allowed detection of recombinant NheC in a sandwich immunoassay at levels below 10 ng ml−1, but no or only minor amounts of NheC were detectable in natural culture supernatants of B. cereus strains. When NheB- and NheC-specific monoclonal antibodies were combined in a sandwich immunoassay, complexes between NheB and NheC could be demonstrated. The level of these complexes was directly correlated with the relative concentrations of NheB and NheC. Toxicity, however, showed a bell-shaped dose-response curve with a plateau at ratios of NheB and NheC between 50:1 and 5:1. Both lower and higher ratios between NheB and NheC strongly reduced cytotoxicity. When the ratio approached an equimolar ratio, complex formation reached its maximum resulting in decreased binding of NheB to Vero cells. These data indicate that a defined level of NheB-NheC complexes as well as a sufficient amount of free NheB is necessary for efficient cell binding and toxicity. Altogether, the results of this study provide evidence that the interaction of NheB and NheC is a balanced process, necessary to induce, but also able to limit the toxic action of Nhe.  相似文献   

6.
Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques.  相似文献   

7.

Objective

Pulmonary artery smooth muscle cells (PA-SMCs) in pulmonary arterial hypertension (PAH) show similarities to cancer cells. Due to the growth-suppressive and pro-apoptotic effects of p53 and its inactivation in cancer, we hypothesized that the p53 pathway could be altered in PAH. We therefore explored the involvement of p53 in the monocrotaline (MCT) rat model of pulmonary hypertension (PH) and the pathophysiological consequences of p53 inactivation in response to animal treatment with pifithrin-α (PFT, an inhibitor of p53 activity).

Methods and Results

PH development was assessed by pulmonary arterial pressure, right ventricular hypertrophy and arterial wall thickness. The effect of MCT and PFT on lung p53 pathway expression was evaluated by western blot. Fourteen days of daily PFT treatment (2.2 mg/kg/day), similar to a single injection of MCT (60 mg/kg), induced PH and aggravated MCT-induced PH. In the first week after MCT administration and prior to PH development, p53, p21 and MDM2 protein levels were significantly reduced; whereas PFT administration effectively altered the protein level of p53 targets. Anti-apoptotic and pro-proliferative effects of PFT were revealed by TUNEL and MTT assays on cultured human PA-SMCs treated with 50 μM PFT.

Conclusions

Pharmacological inactivation of p53 is sufficient to induce PH with a chronic treatment by PFT, an effect related to its anti-apoptotic and pro-proliferative properties. The p53 pathway was down-regulated during the first week in the rat MCT model. These in vivo experiments implicate the p53 pathway at the initiation stages of PH pathogenesis.  相似文献   

8.
9.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC) immortalized cell lines (HBMEC, 16HBE) and cancer (pancreatic adenocarcinoma, BXPC3). Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells.  相似文献   

10.
11.
12.
The decrease in growth rate of the root system or complete cessationof its growth in developed, fruit-bearing tomato plants areknown phenomena. It has been suggested that a limited supplyof carbohydrates to this organ, due to its relative weaknessin competition with the flowers and developing fruitlets isthe main cause for these disorders. This theory was tested inthe present study with plants grown in an aerohydroponic systemup to the appearance of 12–13 trusses per plant, 172 dafter transplanting. The changes in the contents of carbohydratesin the various organs during this period were monitored. Theconcentrations of soluble sugars and starch in the leaves increasedwith the increase in truss number. The upper stem was foundto contain more carbohydrates than the lower stem, while nosignificant changes in the concentration of these compoundscould be detected in the roots throughout the experiment. Nevertheless,120–130 d after transplanting, the roots of the plants,bearing five to six trusses and two to three inflorescences,ceased growing and remained at the same or a slightly reducedsize for another 40–50 d. Calculations show that at thestage of five to six trusses, 38 g total soluble sugars and35 g starch were stored in the vegetative organs. Therefore,it seems unlikely that carbon deficiency caused by the competitionwith the reproductive organs (mainly developing fruits), affectedthe root growth. Instead, it is suggested that some other factoris responsible. Lycopersicon esculentumMill; carbohydrates; root growth rate; sink-source relationship; soluble sugars; starch  相似文献   

13.
Leaf senescence and abscission have been studied in the semi-parasitic plant mistletoe (Viscum album). Leaf senescence and abscission occur in the summer, when the metabolic activity of the host has reached its maximum. In contrast with their hosts, mistletoes selectively degrade only one major leaf protein during leaf senescence, the sulfur-rich viscotoxin, whereas most of the remaining leaf proteins are lost during abscission. The changes in viscotoxin content are paralleled by changes in the concentration of the corresponding mRNA. Shortly before the onset of leaf senescence, the mRNA for viscotoxin has disappeared from the leaves. The anticyclic timing of leaf senescence and the degradation of only one major leaf protein seems to reflect an adaptation of the parasite to its habitat.  相似文献   

14.
Phospholipase A2 (PLA2), which hydrolyzes a fatty acyl chain of membrane phospholipids, has been implicated in several biological processes in plants. However, its role in intracellular trafficking in plants has yet to be studied. Here, using pharmacological and genetic approaches, the root hair bioassay system, and PIN-FORMED (PIN) auxin efflux transporters as molecular markers, we demonstrate that plant PLA2s are required for PIN protein trafficking to the plasma membrane (PM) in the Arabidopsis thaliana root. PLA2α, a PLA2 isoform, colocalized with the Golgi marker. Impairments of PLA2 function by PLA2α mutation, PLA2-RNA interference (RNAi), or PLA2 inhibitor treatments significantly disrupted the PM localization of PINs, causing internal PIN compartments to form. Conversely, supplementation with lysophosphatidylethanolamine (the PLA2 hydrolytic product) restored the PM localization of PINs in the pla2α mutant and the ONO-RS-082–treated seedling. Suppression of PLA2 activity by the inhibitor promoted accumulation of trans-Golgi network vesicles. Root hair–specific PIN overexpression (PINox) lines grew very short root hairs, most likely due to reduced auxin levels in root hair cells, but PLA2 inhibitor treatments, PLA2α mutation, or PLA2-RNAi restored the root hair growth of PINox lines by disrupting the PM localization of PINs, thus reducing auxin efflux. These results suggest that PLA2, likely acting in Golgi-related compartments, modulates the trafficking of PIN proteins.  相似文献   

15.
16.
17.
18.
We studied the effect of nickel ions on the activity of ecto-phosphohydrolases (acid phosphatase and Ca-stimulated nucleotidase) from root surface of etiolated barley seedlings as well as from root microsomal fraction. The presence of nickel nitrate (25 M) proved to stop root growth and insignificantly (on average by 20%) decreased specific hydrolytic activity of both enzymes determined on root surface as well as in the root microsomal fraction. At the same time, direct addition of nickel to the incubation mixture when measuring the substrate hydrolysis demonstrated high resistance of the microsomal fraction enzymes to the salts. A significant decrease in Ca-stimulated nucleotidase activity was observed only for nickel nitrate concentrations above 100 M, reaching 50–60% for 3 mM Ni(NO3)2. The presence of an activator ion as well as extended duration of the microsomal fraction pretreatment with nickel nitrate (2.5 h) did not increase its effect on the enzyme activity. The pattern of nickel effect on acid phosphatase activity depended on the presence of magnesium ions in the mixture but did not change after extended duration of the microsomal fraction pretreatment (3 h). Inhibition of acid phosphatase activity in the presence of magnesium was observed only for nickel nitrate concentrations above 500 M being no more than 20% for 3 mM Ni(NO3)2. Hence, the hydrolytic enzymes of the apoplast of plant root cells have different tolerance to nickel salts. We propose that an insignificant decrease in specific activity of surface hydrolases of plant roots grown on a medium containing nickel salts in concentrations inhibiting growth processes (25 M) is not related to direct effect of Ni on the apoplastic enzymes. The significance of hydrolytic enzyme resistance in plant adaptation to high nickel content in the soil is discussed.  相似文献   

19.
Many plant-associated bacteria synthesize the phytohormone indoleacetic acid (IAA). While IAA produced by phytopathogenic bacteria, mainly by the indoleacetamide pathway, has been implicated in the induction of plant tumors, it is not clear whether IAA synthesized by beneficial bacteria, usually via the indolepyruvic acid pathway, is involved in plant growth promotion. To determine whether bacterial IAA enhances root development in host plants, the ipdc gene that encodes indolepyruvate decarboxylase, a key enzyme in the indolepyruvic acid pathway, was isolated from the plant growth-promoting bacterium Pseudomonas putida GR12-2 and an IAA-deficient mutant constructed by insertional mutagenesis. The canola seedling primary roots from seeds treated with wild-type P. putida GR12-2 were on average 35 to 50% longer than the roots from seeds treated with the IAA-deficient mutant and the roots from uninoculated seeds. In addition, exposing mung bean cuttings to high levels of IAA by soaking them in a suspension of the wild-type strain stimulated the formation of many, very small, adventitious roots. Formation of fewer roots was stimulated by treatment with the IAA-deficient mutant. These results suggest that bacterial IAA plays a major role in the development of the host plant root system.  相似文献   

20.
Collagen prolyl 4-hydroxylases (C-P4H) are required for formation of extracellular matrices in higher eukaryotes. These enzymes convert proline residues within the repeat regions of collagen polypeptides to 4-hydroxyproline, a modification essential for the stability of the final triple helix. C-P4H are most often oligomeric complexes, with enzymatic activity contributed by the α subunits, and the β subunits formed by protein disulfide isomerase (PDI). Here, we characterize this enzyme class in the important human parasitic nematode Brugia malayi. All potential C-P4H subunits were identified by detailed bioinformatic analysis of sequence databases, function was investigated both by RNAi in the parasite and heterologous expression in Caenorhabditis elegans, whereas biochemical activity and complex formation were examined via co-expression in insect cells. Simultaneous RNAi of two B. malayi C-P4H α subunit-like genes resulted in a striking, highly penetrant body morphology phenotype in parasite larvae. This was replicated by single RNAi of a B. malayi C-P4H β subunit-like PDI. Surprisingly, however, the B. malayi proteins were not capable of rescuing a C. elegans α subunit mutant, whereas the human enzymes could. In contrast, the B. malayi PDI did functionally complement the lethal phenotype of a C. elegans β subunit mutant. Comparison of recombinant and parasite derived material indicates that enzymatic activity may be dependent on a non-reducible covalent link, present only in the parasite. We therefore demonstrate that C-P4H activity is essential for development of B. malayi and uncover a novel parasite-specific feature of these collagen biosynthetic enzymes that may be exploited in future parasite control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号