共查询到20条相似文献,搜索用时 0 毫秒
1.
A role for PKCzeta in the LPS-induced translocation NF-kappaB p65 subunit in cultured myometrial cells 总被引:2,自引:0,他引:2
Human myometrial cells respond to the endotoxin lipopolysaccharide (LPS) by activation of protein kinase C (PKC) zeta and nuclear translocation of the p65 subunit of NF-kB. Our first objective was to determine the expression of TLR4 in cultured myometrial cells. Positive immunoreactivity observed for TLR4 suggests that myometrial cells have the potential to respond to LPS. To confirm that LPS signals via TLR4, the ability of an anti-TLR4 neutralizing antibody to block LPS-induced translocation of p65 was demonstrated. To determine whether LPS-induced nuclear translocation of p65 is mediated through the PKC pathway, myometrial cells were treated with various inhibitors of the PKC isoforms already characterized in human myometrium. Neither the selective conventional PKC inhibitor nor the inhibitor of PKCdelta affected NF-kB activation. By contrast, we found that treatment of myometrial cells with an antisense against PKCzeta affect LPS-induced nuclear translocation of the p65 subunit of NF-kB. Accordingly, our data support the notion that PKCzeta is essential for LPS-induced NF-kB p65 subunit nuclear translocation in human myometrial cells. 相似文献
2.
H Sakurai H Chiba H Miyoshi T Sugita W Toriumi 《The Journal of biological chemistry》1999,274(43):30353-30356
Recent investigations have elucidated the cytokine-induced NF-kappaB activation pathway. IkappaB kinase (IKK) phosphorylates inhibitors of NF-kappaB (IkappaBs). The phosphorylation targets them for rapid degradation through a ubiquitin-proteasome pathway, allowing the nuclear translocation of NF-kappaB. We have examined the possibility that IKK can phosphorylate the p65 NF-kappaB subunit as well as IkappaB in the cytokine-induced NF-kappaB activation. In the cytoplasm of HeLa cells, the p65 subunit was rapidly phosphorylated in response to TNF-alpha in a time dependent manner similar to IkappaB phosphorylation. In vitro phosphorylation with GST-fused p65 showed that a p65 phosphorylating activity was present in the cytoplasmic fraction and the target residue was Ser-536 in the carboxyl-terminal transactivation domain. The endogenous IKK complex, overexpressed IKKs, and recombinant IKKbeta efficiently phosphorylated the same Ser residue of p65 in vitro. The major phosphorylation site in vivo was also Ser-536. Furthermore, activation of IKKs by NF-kappaB-inducing kinase induced phosphorylation of p65 in vivo. Our finding, together with previous observations, suggests dual roles for IKK complex in the regulation of NF-kappaB.IkappaB complex. 相似文献
3.
4.
5.
6.
7.
The citM gene from Lactococcus lactis CRL264 was demonstrated to encode for an oxaloacetate decarboxylase. The enzyme exhibits high levels of similarity to malic enzymes (MEs) from other organisms. CitM was expressed in Escherichia coli, purified and its oxaloacetate decarboxylase activity was demonstrated by biochemical and genetic studies. The highest oxaloacetate decarboxylation activity was found at low pH in the presence of manganese, and the Km value for oxaloacetate was 0.52 ± 0.03 mM. However, no malic activity was found for this enzyme. Our studies clearly show a new group of oxaloacetate decarboxylases associated with the citrate fermentation pathway in gram-positive bacteria. Furthermore, the essential catalytic residues were found to be conserved in all members of the ME family, suggesting a common mechanism for oxaloacetate decarboxylation. 相似文献
8.
9.
10.
Bruton's tyrosine kinase (Btk) has recently been shown to participate in the induction of nuclear factor kappaB (NFkappaB)-dependent gene expression by the lipopolysaccharide (LPS) receptor Toll-like receptor-4 (TLR4). In this study we have examined the mechanism whereby Btk participates in this response. Treatment of the murine monocytic cell line Raw264.7 with LFM-A13, a specific Btk inhibitor, blocked LPS-induced NFkappaB-dependent reporter gene expression but not IkappaB alpha degradation. Transient transfection of HEK293 cells with Btk had no effect on NFkappaB-dependent reporter gene expression but strongly promoted transactivation of a reporter gene by a p65-Gal4 fusion protein. IkappaB alpha degradation activated by LPS was intact in macrophages from X-linked immunodeficiency (Xid) mice, which contain inactive Btk. Transfection of cells with a dominant negative form of Btk (BtkK430R) inhibited LPS-driven p65 mediated transactivation. Additionally LFM-A13 impaired phosphorylation of serine 536 on p65 induced by LPS in HEK293-TLR4 cells, and in Xid macrophages this response was impaired. This study therefore reveals a novel function for Btk. It is required for the signaling pathway activated by TLR4, which culminates in phosphorylation of p65 on serine 536 promoting transactivation by NFkappaB. 相似文献
11.
Bhattacharyya S Borthakur A Pant N Dudeja PK Tobacman JK 《American journal of physiology. Gastrointestinal and liver physiology》2007,293(2):G429-G437
Lipopolysaccharide (LPS) is recognized as an inducer of the inflammatory response associated with gram-negative sepsis and systemic inflammatory response syndrome. LPS induction proceeds through Toll-like receptor (TLR) in immune cells and intestinal epithelial cells (IEC). This report presents the first identification of Bcl10 (B-cell CLL/lymphoma 10) as a mediator of the LPS-induced activation of IL-8 in human IEC. Bcl10 is a caspase-recruitment domain-containing protein, associated with constitutive activation of NF-kappaB in MALT (mucosa-associated lymphoid tissue) lymphomas. The normal human IEC line NCM460, normal primary human colonocytes, and ex vivo human colonic tissue were exposed to 10 ng/ml of LPS for 2-6 h. Effects on Bcl10, phospho-IkappaBalpha, NF-kappaB, and IL-8 were determined by Western blot, ELISA, immunohistochemistry, and confocal microscopy. Effects of Bcl10 silencing by small-interfering RNA (siRNA), TLR4 blocking antibody, TLR4 silencing by siRNA, and an IL-1 receptor-associated kinase (IRAK)-1/4 inhibitor on LPS-induced activation were examined. Following Bcl10 silencing, LPS-induced increases in NF-kappaB, IkappaBalpha, and IL-8 were significantly reduced (P < 0.001). Increasing concentrations of LPS were associated with higher concentrations of Bcl10 protein when quantified by ELISA, and the association between LPS exposure and increased Bcl10 was also demonstrated by Western blot, immunohistochemistry, and confocal microscopy. Exposure to TLR4 antibody, TLR4 siRNA, or an IRAK-1/4 inhibitor eliminated the LPS-induced increases in Bcl10, NF-kappaB, and IL-8. Identification of Bcl10 as a mediator of LPS-induced activation of NF-kappaB and IL-8 in normal human IEC provides new insight into mechanisms of epithelial inflammation and new opportunities for therapeutic intervention. 相似文献
12.
Neznanov N Chumakov KM Neznanova L Almasan A Banerjee AK Gudkov AV 《The Journal of biological chemistry》2005,280(25):24153-24158
Activation of NF-kappaB during viral infection is one of the critical elements in innate immune response. Several virus-specific factors, such as double-stranded RNA, can trigger host defense mechanisms by inducing NF-kappaB-mediated expression of cytokines and interferons. Early stages of poliovirus infection are also associated with degradation of IkappaB alpha and translocation of NF-kappaB into the nucleus. However, at later stages of poliovirus replication the p65-RelA component of the NF-kappaB complex undergoes a specific cleavage that coincides with the onset of intensive poliovirus protein synthesis and the appearance of the activity of poliovirus protease 3C. Indeed, the p65-RelA amino acid sequence contains the recognition site for 3C, and recombinant protein 3C was shown to be capable of proteolytic cleavage of p65-RelA, generating truncated product similar to that observed during poliovirus infection. Cleavage of p65-RelA occurs during replication of ECHO-1 and rhinovirus 14, suggesting that inactivation of NF-kappaB function by proteolytic cleavage of p65-RelA is the common mechanism by which picornaviruses suppress the innate immune response. 相似文献
13.
14.
Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1 总被引:9,自引:0,他引:9
15.
16.
Huang Yihua Li Xuyan Liu Yiwen Gong Qimei Tian Jun Jiang Hongwei 《Journal of molecular histology》2021,52(5):919-928
Journal of Molecular Histology - Lipopolysaccharides (LPS), which are components of the cell wall of Gram-negative bacteria, are among the important factors that induce inflammation, including... 相似文献
17.
18.
19.
Shingo Ichimiya Takashi Kojima Hiroyuki Momota Nobuhiko Kondo Toshinori Ozaki Akira Nakagawara María Luisa Toribio Masakatsu Imamura Noriyuki Sato 《The journal of histochemistry and cytochemistry》2002,50(4):455-462
The thymus is a heterogeneous immune organ in which immature T-cells develop and eventually specialize to make certain immune responses of their own. Among various types of stromal cells in the thymus, thymic epithelial cells (TECs) have a crucially important function for presenting self-antigens and secreting cytokines to thymocytes for their maturation into T-cells. In this study we show that the p73 gene, a homologue of the tumor suppressor gene p53, was expressed in the nucleus of the human TEC in vivo and in TEC lines in vitro. Because p73 has the capacity to be a transactivator like p53, it may contribute to T-cell development in the context of TEC biology as regulated in the cell cycle and apoptosis. 相似文献