首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and Objective

The slow delayed rectifier current (IKs) is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced IKs and atrial fibrillation (a human arrhythmia). Structure-function relationship of the KCNE1 N-terminus for IKs modulation is poorly understood and was subject of this study.

Methods

We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines) at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy.

Results

All KCNE1 constructs physically interacted with Kv7.1. IKs resulting from co-expression of Kv7.1 with non-atrial fibrillation ‘38S’ was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions (‘38G-3xA’) were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct (‘Δ1-38’). Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct.

Conclusions

The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of IKs. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.  相似文献   

2.
Voltage-gated K(+) channels comprise a central pore enclosed by four voltage-sensing domains (VSDs). While movement of the S4 helix is known to couple to channel gate opening and closing, the nature of S4 motion is unclear. Here, we substituted S4 residues of Kv7.1 channels by cysteine and recorded whole-cell mutant channel currents in Xenopus oocytes using the two-electrode voltage-clamp technique. In the closed state, disulfide and metal bridges constrain residue S225 (S4) nearby C136 (S1) within the same VSD. In the open state, two neighboring I227 (S4) are constrained at proximity while residue R228 (S4) is confined close to C136 (S1) of an adjacent VSD. Structural modeling predicts that in the closed to open transition, an axial rotation (approximately 190 degrees) and outward translation of S4 (approximately 12 A) is accompanied by VSD rocking. This large sensor motion changes the intra-VSD S1-S4 interaction to an inter-VSD S1-S4 interaction. These constraints provide a ground for cooperative subunit interactions and suggest a key role of the S1 segment in steering S4 motion during Kv7.1 gating.  相似文献   

3.
The voltage-gated potassium channel subunit Kv2.1 forms heterotetrameric channels with the silent subunit Kv6.4. Chimeric Kv2.1 channels containing a single transmembrane segment from Kv6.4 have been shown to be functional. However, a Kv2.1 chimera containing both S1 and S5 from Kv6.4 was not functional. Back mutation of individual residues in this chimera (to the Kv2.1 counterpart) identified four positions that were critical for functionality: A200V and A203T in S1, and T343M and P347S in S5. To test for possible interactions in Kv2.1, we used substitutions with charged residues and tryptophan for the outermost pair 203/347. Combinations of substitutions with opposite charges at both T203 and S347 were tolerated but resulted in channels with altered gating kinetics, as did the combination of negatively charged aspartate substitutions. Double mutant cycle analysis with these mutants indicated that both residues are energetically coupled. In contrast, replacing both residues with a positively charged lysine together (T203K + S347K) was not tolerated and resulted in a folding or trafficking deficiency. The nonfunctionality of the T203K + S347K mutation could be restored by introducing the R300E mutation in the S4 segment of the voltage sensor. These results indicate that these specific S1, S4, and S5 residues are in close proximity and interact with each other in the functional channel, but are also important determinants for Kv2.1 channel maturation. These data support the view of an anchoring interaction between S1 and S5, but indicate that this interaction surface is more extensive than previously proposed.  相似文献   

4.
Inactivation is an intrinsic property of numerous voltage-gated K+ (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.  相似文献   

5.
6.
Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+) channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+) channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions.  相似文献   

7.
Kelley RW  Cheng D  Backes WL 《Biochemistry》2006,45(51):15807-15816
Mixed reconstituted systems containing CYP2B4, CYP1A2, and NADPH-cytochrome P450 reductase were previously shown to exhibit a dramatic inhibition of 7-pentoxyresorufin O-dealkylation (PROD) when compared to simple reconstituted systems containing reductase and a single P450 enzyme, results consistent with the formation of CYP1A2-CYP2B4 complexes where the reductase binds with high affinity to the CYP1A2 moiety of the complex. In this report, we provide evidence for an interaction between CYP1A2 and CYP2E1. Synergism of 7-ethoxyresorufin O-deethylation (EROD) and PROD was observed when these P450s were combined in mixed reconstituted systems at subsaturating reductase concentrations. Higher ionic strength attenuated the synergistic stimulation of both PROD and EROD in mixed reconstituted systems, consistent with disruption of heteromeric CYP2E1-CYP1A2 complexes. The effect of ionic strength was further examined as a function of reductase concentration. At lower ionic strength, there was a significant synergistic stimulation of EROD. This synergistic stimulation diminished with increasing reductase concentration, resulting in an additive response as reductase became saturating. Interestingly, at high ionic strength, the synergism of EROD in the mixed reconstituted system was not observed. In contrast, mixed reconstituted systems containing CYP2E1 and CYP2B4 did not provide evidence for the formation of these heteromeric P450-P450 complexes. The synergistic stimulation observed with the reductase-CYP1A2-CYP2E1 mixed reconstituted system is consistent with the formation of a CYP1A2-CYP2E1 complex. Taken together with the lack of a kinetically detectable interaction between CYP2B4 and CYP2E1, and the previously reported CYP1A2-CYP2B4 interaction, these results suggest that CYP1A2 may facilitate the formation of complexes with other P450 enzymes.  相似文献   

8.
Wu D  Pan H  Delaloye K  Cui J 《Biophysical journal》2010,99(11):3599-3608
The KCNE1 auxiliary subunit coassembles with the Kv7.1 channel and modulates its properties to generate the cardiac IKs current. Recent biophysical evidence suggests that KCNE1 interacts with the voltage-sensing domain (VSD) of Kv7.1. To investigate the mechanism of how KCNE1 affects the VSD to alter the voltage dependence of channel activation, we perturbed the VSD of Kv7.1 by mutagenesis and chemical modification in the absence and presence of KCNE1. Mutagenesis of S4 in Kv7.1 indicates that basic residues in the N-terminal half (S4-N) and C-terminal half (S4-C) of S4 are important for stabilizing the resting and activated states of the channel, respectively. KCNE1 disrupts electrostatic interactions involving S4-C, specifically with the lower conserved glutamate in S2 (Glu170 or E2). Likewise, Trp scanning of S4 shows that mutations to a cluster of residues in S4-C eliminate current in the presence of KCNE1. In addition, KCNE1 affects S4-N by enhancing MTS accessibility to the top of the VSD. Consistent with the structure of Kv channels and previous studies on the KCNE1-Kv7.1 interaction, these results suggest that KCNE1 alters the interactions of S4 residues with the surrounding protein environment, possibly by changing the protein packing around S4, thereby affecting the voltage dependence of Kv7.1.  相似文献   

9.
Human TopBP1 with eight BRCA1 C terminus domains has been mainly reported to be involved in DNA damage response pathways. Here we show that TopBP1 is also required for G(1) to S progression in a normal cell cycle. TopBP1 deficiency inhibited cells from entering S phase by up-regulating p21 and p27, resulting in down-regulation of cyclin E/CDK2. Although co-depletion of p21 and p27 with TopBP1 restored the cyclin E/CDK2 kinase activity, however, cells remained arrested at the G(1)/S boundary, showing defective chromatin-loading of replication components. Based on these results, we suggest a dual role of TopBP1 necessary for the G(1)/S transition: one for activating cyclin E/CDK2 kinase and the other for loading replication components onto chromatin to initiate DNA synthesis.  相似文献   

10.
Previous work has demonstrated that replacing individual arginine (R) residues in the S4 domain of Kv4.3 with alanine (A) not only altered activation and deactivation processes, but also those of closed-state inactivation (CSI) and recovery. R → A mutants eliminated individual positive charge while substantially reducing side chain volume and hydrophilic character. Their novel effects on gating may thus have been the result of electrostatic and/or structural perturbations. To address this issue, and to gain further insights into the roles that S4 plays in the regulation of Kv4.3 gating transitions, we comparatively analyzed arginine to glutamine (R → Q) mutations at positions 290, 293, and 296. This maneuver maintained positive charge elimination of the R → A mutants, while partially restoring native side chain volume and hydrophilic properties. R → A and R → Q mutant pairs produced similar effects on the forward gating process of activation. In contrast, significant differences between the two substitutions were discovered on deactivation, CSI, and recovery, with the R → Q mutants partially restoring wild type characteristics. Our results argue that modification of individual S4 residue properties may result in altered localized interactions within unique microenvironments encountered during forward and reverse gating transitions. As such, predominant effects appear on the reverse gating transitions of deactivation and recovery. These results are consistent with the proposal that arginine residues in S4 are involved in regulating Kv4.3 CSI and recovery.  相似文献   

11.
Charged amino acids are mostly exposed on a protein surface, thereby forming a network of interactions with the surrounding amino acids as well as with water. In particular, positively charged arginine and lysine have different side chain geometries and provide a different number of potential electrostatic interactions. This study reports a comparative analysis of the difference in the number of two representative electrostatic interactions, such as salt-bridges and hydrogen bonds, contributed by surface arginine and lysine, as well as their effect on protein stability using molecular modeling and dynamics simulation techniques. Two in silico variants, the R variant with all arginines and the K variant with all lysines on the protein surface, were modeled by mutating all the surface lysines to arginines and the surface arginines to lysines, respectively, for each of the 10 model proteins. A structural comparison of the respective two variants showed that the majority of R variants possessed more salt-bridges and hydrogen bond interactions than the K variants, indicating that arginine provides a higher probability of electrostatic interactions than lysine owing to its side chain geometry. Molecular dynamics simulations of these variants revealed the R variants to be more stable than the K variants at room temperature but this effect was not prominent under protein denaturating conditions, such as 353 and 333 K with 8 M urea. These results suggest that the arginine residues on a protein surface contribute to the protein stability slightly more than lysine by enhancing the electrostatic interactions.  相似文献   

12.
13.
The KCNQ1 (Kv7.1) channel plays an important role in cardiovascular physiology. Cardiomyocytes co‐express KCNQ1 with KCNE1‐5 proteins. KCNQ1 may co‐associate with multiple KCNE regulatory subunits to generate different biophysically and pharmacologically distinct channels. Increasing evidence indicates that the location and targeting of channels are important determinants of their function. In this context, the presence of K+ channels in sphingolipid–cholesterol‐enriched membrane microdomains (lipid rafts) is under investigation. Lipid rafts are important for cardiovascular functioning. We aimed to determine whether KCNE subunits modify the localization and targeting of KCNQ1 channels in lipid rafts microdomains. HEK‐293 cells were transiently transfected with KCNQ1 and KCNE1–5, and their traffic and presence in lipid rafts were analyzed. Only KCNQ1 and KCNE3, when expressed alone, co‐localized in raft fractions. In addition, while KCNE2 and KCNE5 notably stained the cell surface, KCNQ1 and the rest of the KCNEs showed strong intracellular retention. KCNQ1 targets multiple membrane surface microdomains upon association with KCNE peptides. Thus, while KCNQ1/KCNE1 and KCNQ1/KCNE2 channels target lipid rafts, KCNQ1 associated with KCNE3–5 did not. Channel membrane dynamics, analyzed by fluorescence recovery after photobleaching (FRAP) experiments, further supported these results. In conclusion, the trafficking and targeting pattern of KCNQ1 can be influenced by its association with KCNEs. Since KCNQ1 is crucial for cardiovascular physiology, the temporal and spatial regulations that different KCNE subunits may confer to the channels could have a dramatic impact on membrane electrical activity and putative endocrine regulation. J. Cell. Physiol. 225: 692–700, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
15.
The S4 transmembrane domain in Shaker (Kv1) voltage-sensitive potassium channels has four basic residues (R1–R4) that are responsible for carrying the majority of gating charge. In Kv4 channels, however, R1 is replaced by a neutral valine at position 287. Among other differences, Kv4 channels display prominent closed state inactivation, a mechanism which is minimal in Shaker. To determine if the absence of R1 is responsible for important variation in gating characteristics between the two channel types, we introduced the V287R mutant into Kv4.3 and analyzed its effects on several voltage sensitive gating transitions. We found that the mutant increased the voltage sensitivity of steady-state activation and altered the kinetics of activation and deactivation processes. Although the kinetics of macroscopic inactivation were minimally affected, the characteristics of closed-state inactivation and recovery from open and closed inactivated states were significantly altered. The absence of R1 can only partially account for differences in the effective voltage sensitivity of gating between Shaker and Kv4.3. These results suggest that the S4 domain serves an important functional role in Kv4 channel activation and deactivation processes, and also those of closed-state inactivation and recovery.  相似文献   

16.
The Kv1.3 voltage-gated potassium channel is involved in a number of processes in excitable and nonexcitable cells: maintenance of resting membrane potential, signal transduction, apoptosis, regulation of cell volume, activation and proliferation of white blood cells. Blocking this channel is an effective approach for the treatment of autoimmune, oncological, chronic inflammatory, and metabolic diseases. The most prospective blockers of Kv1.3 are toxins isolated from the venom of scorpions. Knowledge of the molecular aspects of binding of peptide blockers with the channel is an important condition for the creation of highly effective and selective ligands. In the present work, a complex of hybrid channel KcsA-Kv1.3 with agitoxin 2 was built using homology modeling and molecular dynamics simulation. Analysis of formed contacts allowed us to reveal a complete pattern of interactions and to identify key residues that are responsible for the toxin binding affinity. Results of computational experiment are consistent with the experimental data and important for drug development.  相似文献   

17.
18.
Functional interactions between papillomavirus E1 and E2 proteins.   总被引:4,自引:3,他引:1       下载免费PDF全文
DNA replication of papillomaviruses requires the viral E1 and E2 proteins. These proteins bind cooperatively to the viral origin of replication (ori), which contains binding sites for both proteins, forming an E1-E2-ori complex which is essential for initiation of DNA replication. To map the domains in E2 that are involved in the interaction with E1, we have used chimeric bovine papillomavirus (BPV)/human papillomavirus type 11 (HPV-11) E2 proteins. The results from this study show that both the DNA binding domain and the transactivation domain from BPV E2 independently can interact with BPV E1. However, the roles of these two interactions are different: the interaction between E1 and the activation domain of E2 is necessary and sufficient for cooperativity in binding and for DNA replication; the interaction between E1 and the DNA binding domain of E2 is required only when the binding sites for E1 and E2 are adjacent to each other, and the function of this interaction appears to be to facilitate the interaction between E1 and the transactivation domain of E2. These results indicate that the cooperative binding of E1 and E2 to the BPV ori takes place via a novel two-stage mechanism where one interaction serves as a trigger for the formation of the second, productive, interaction between the two proteins.  相似文献   

19.
20.
Mitogenic stimulation leads to activation of G(1) cyclin-dependent kinases (CDKs), which phosphorylate pocket proteins and trigger progression through the G(0)/G(1) and G(1)/S transitions of the cell cycle. However, the individual role of G(1) cyclin-CDK complexes in the coordinated regulation of pocket proteins and their interaction with E2F family members is not fully understood. Here we report that individually or in concert cyclin D1-CDK and cyclin E-CDK complexes induce distinct and coordinated phosphorylation of endogenous pocket proteins, which also has distinct consequences in the regulation of pocket protein interactions with E2F4 and the expression of p107 and E2F1, both E2F-regulated genes. The up-regulation of these two proteins and the release of p130 and pRB from E2F4 complexes allows formation of E2F1 complexes not only with pRB but also with p130 and p107 as well as the formation of p107-E2F4 complexes. The formation of these complexes occurs in the presence of active cyclin D1-CDK and cyclin E-CDK complexes, indicating that whereas phosphorylation plays a role in the abrogation of certain pocket protein/E2F interactions, these same activities induce the formation of other complexes in the context of a cell expressing endogenous levels of pocket and E2F proteins. Of note, phosphorylated p130 "form 3," which does not interact with E2F4, readily interacts with E2F1. Our data also demonstrate that ectopic overexpression of either cyclin is sufficient to induce mitogen-independent growth in human T98G and Rat-1 cells, although the effects of cyclin D1 require downstream activation of cyclin E-CDK2 activity. Interestingly, in T98G cells, cyclin D1 induces cell cycle progression more potently than cyclin E. This suggests that cyclin D1 activates pathways independently of cyclin E that ensure timely progression through the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号