首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full-length cDNA corresponding to the Dictyostelium myosin light chain kinase gene has been isolated and characterized. Sequence analysis of the cDNA confirms conserved protein kinase subdomains and reveals that the Dictyostelium sequence is highly homologous to those of calcium/calmodulin-dependent protein kinases, including myosin light chain kinases from higher eukaryotes. Despite the high homologies to calcium/calmodulin-dependent protein kinases, there is no recognizable calmodulin-binding domain within the Dictyostelium sequence. However, the Dictyostelium myosin light chain kinase possesses a putative auto-inhibitory domain near its carboxyl terminus. To further characterize this domain, the full-length enzyme as well as a truncated form lacking this domain were expressed in bacterial cells and purified. The full-length enzyme expressed in bacteria exhibits essentially the same biochemical characteristics as the enzyme isolated from Dictyostelium. The truncated form however exhibits a Vmax that is approximately ten times greater than that of the native enzyme. In addition, unlike the native kinase and the full-length kinase expressed in bacteria, the truncated enzyme does not undergo autophosphorylation. These results suggest that the Dictyostelium enzyme, like myosin light chain kinases from higher eukaryotes, is regulated by an autoinhibitory domain but that the specific molecular signals necessary for activation of the Dictyostelium enzyme are entirely distinct.  相似文献   

2.
We have previously isolated two Ca2+, calmodulin-dependent protein kinases with molecular weights of 120,000 (120K enzyme) and 640,000 (640K enzyme), respectively, by gel filtration analysis from rat brain. Chicken gizzard myosin light-chain kinase and the 120K enzyme phosphorylated two light chains of brain myosin, whereas the 640K enzyme phosphorylated both the two light chains and the heavy chain. The phosphopeptides of the light chains digested by Staphylococcus aureus V8 protease were similar among chicken gizzard myosin light-chain kinase, the 120K enzyme, and the 640K enzyme. Only the seryl residue in the light chains and the heavy chain was phosphorylated by the enzymes. The phosphorylation of brain myosin by any of these enzymes led to an increase in actin-activated Mg-ATPase activity. The results suggest that brain myosin is regulated by brain Ca2+, calmodulin-dependent protein kinases in a similar but distinct mechanism in comparison with that of smooth muscle myosin.  相似文献   

3.
Examination, by immunoblotting, of myosin light chain kinase-containing fractions obtained during purification of the enzyme from chicken gizzard has shown that a single species (Mr = 136,000) exists in the muscle and that this enzyme is degraded, primarily to a 130,000-dalton fragment, during purification. These conclusions were confirmed by phosphorylation of the different species of myosin light chain kinase by the isolated catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

4.
D Sinha  F S Seaman  P N Walsh 《Biochemistry》1987,26(13):3768-3775
Since optimal rates of factor IX activation by factor XIa require the presence of calcium ions and the heavy chain of the enzyme as well as the active-site-containing light chain, we have studied the effects of calcium ions and the heavy chain on the reaction kinetics. Whereas the amidolytic activities of factor XIa and of its active-site-containing light chain were almost indistinguishable, the two enzymes behaved quite differently when factor IX was the substrate. Factor XIa was 100-fold more potent in the presence of Ca2+ than in its absence. On the contrary, the presence or absence of Ca2+ made very little difference in the case of the isolated light chain of factor XIa. Moreover, the enzymatic activity of the light chain was almost identical with that of intact factor XIa when Ca2+ was absent. Using an optimal concentration of Ca2+, we studied the activation in the presence of various concentrations of two monoclonal antibodies, one (5F4) directed against the light chain of factor XIa and the other (3C1) against its heavy chain. Analysis of 1/V vs. 1/S plots showed that whereas inhibition by 5F4 was noncompetitive, 3C1 neutralized the enzyme in a classical competitive fashion. We conclude that in the calcium-dependent activation of factor IX by factor XIa the heavy chain of the enzyme is involved in the binding of the substrate and this is essential for optimal reaction rates.  相似文献   

5.
The amino-terminal sequence of the catalytic subunit of bovine enterokinase   总被引:2,自引:0,他引:2  
Bovine enterokinase (enteropeptidase) is a serine protease and functions as the physiological activator of trypsinogen. The enzyme has a heavy chain (115 kD) covalently linked to a light or catalytic subunit (35 kD). The amino acid composition showed that the light chain has nine half-cystine residues (four as intramolecular disulfides) and that one half-cystine was in a disulfide link between the light and heavy subunits. The amino-terminal 27 residues of the S-vinylpyridyl derivative of the light chain were determined by gas-phase Edman degradation. The sequence has homologies with other serine proteases containing one or two chains. The homologies suggest that the catalytic subunit has the same three-dimensional structure and, therefore, the same mechanism of enzymatic action as pancreatic chymotrypsin, trypsin, and elastase. The presence of the conserved amino-terminal activation peptide sequence (IVGG) shows that enterokinase must have a zymogen precursor and that the two-chain enzyme arises from limited proteolysis during posttranslational processing.  相似文献   

6.
Myosin light chain kinase, which is located primarily in the soluble fraction of bovine myocardium, has been isolated and purified approximately 1200-fold with 16% yield by a three-step procedure. The approximate content of soluble myosin light chain kinase in heart is calculated to be 0.63 microM. The isolated kinase is active only as a ternary complex consisting of the kinase, calmodulin, and Ca2+; the apparent Kd for calmodulin is 1.3 nM. The enzyme also exhibits a requirement for Mg2+ ions. Myosin light chain kinase is a monomeric enzyme with Mr = 85,000. The enzyme exhibits a Km for ATP of 175 microM, and a K0.5 for the regulatory light chain of cardiac myosin of 21 microM. The optimum pH is 8.1. Kinase activity is specific for the regulatory light chain of myosin. The specific activity of the isolated enzyme (30 nmol 32P/min/mg of protein) is considerably less than and corresponding values reported for the skeletal and smooth muscle light chain kinases. This is probably due to proteolysis during extraction of the myocardium, a phenomenon which has, as yet, proven impossible to eliminate. In contrast to the smooth muscle enzyme (Adelstein, R.S., Conti, M.A., Hathaway, D.R., and Klee, C.B. (1978) J. Biol. Chem. 253, 8347-8350), the cardiac kinase is not phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

7.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

8.
Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin   总被引:5,自引:0,他引:5  
Isolated myosin light chain from chicken gizzard has been shown to serve as a substrate for Ca2+-activated phospholipid-dependent protein kinase. Autoradiography showed that Ca2+-activated phospholipid-dependent protein kinase phosphorylated mainly the 20,000-dalton light chain of chicken gizzard myosin. Exogenously added calmodulin had no effect on myosin light chain phosphorylation catalyzed by the enzyme. The 20,000-dalton myosin light chain, both in the isolated form and in the whole myosin form, served as the substrate for this enzyme. In contrast to the isolated myosin light chain, the light chain of whole myosin was phosphorylated to a lesser extent by the Ca2+-activated phospholipid dependent kinase. Our results suggest the involvement of phospholipid in regulating Ca2+-dependent phosphorylation of the 20,000-dalton light chain of smooth muscle myosin.  相似文献   

9.
Regulation of embryonic smooth muscle myosin by protein kinase C   总被引:2,自引:0,他引:2  
Phosphorylation of the 20-kDa light chain regulates adult smooth muscle myosin; phosphorylation by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase stimulates the actomyosin ATPase activity of adult smooth muscle myosin; the simultaneous phosphorylation of a separate site on the 20-kDa light chain by the Ca2+/phospholipid-dependent enzyme protein kinase C attenuates the myosin light chain kinase-induced increase in the actomyosin ATPase activity of adult myosin. Fetal smooth muscle myosin, purified from 12-day-old fertilized chicken eggs, is structurally different from adult smooth muscle myosin. Nevertheless, phosphorylation of a single site on the 20-kDa light chain of fetal myosin by myosin light chain kinase results in stimulation of the actomyosin ATPase activity of this myosin. Protein kinase C, in contrast, phosphorylates three sites on the fetal myosin 20-kDa light chain including a serine or threonine residue on the same peptide phosphorylated by myosin light chain kinase. Interestingly, phosphorylation by protein kinase C stimulates the actomyosin ATPase activity of fetal myosin. Moreover, unlike adult myosin, there is no attenuation of the actomyosin ATPase activity when fetal myosin is simultaneously phosphorylated by myosin light chain kinase and protein kinase C. These data demonstrate, for the first time, the in vitro activation of a smooth muscle myosin by another enzyme besides myosin light chain kinase and raise the possibility of alternate pathways for regulating smooth muscle myosin in vivo.  相似文献   

10.
A phosphatase that dephosphorylates myosin and the isolated light chain has been purified to near homogeneity from chicken gizzard smooth muscle. The molecular weight of the enzyme was estimated to be 100,000 and 35,000 under native and denatured conditions, respectively. It requires Mg2+ or Mn2+. The activity was measured quantitatively with a coupled enzyme system with the aid of myosin light chain kinase. The Vm and Km were determined to be 23.4 mumol/mg/min and 4.2 microM, respectively, with the isolated light chain as substrate under the optimal conditions (5 mM Mg2+ at pH 8.45). The specific activity with myosin as substrate at a concentration of 0.9 microM was found to be 1.25 mumol/mg/min, which was about one-fifth of the activity for the isolated light chain under the same conditions. The phosphatase seems to be specific to gizzard myosin. It may play an important role in the regulation of the myosin-actin interaction in smooth muscle.  相似文献   

11.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

12.
A phosphatase that is active in dephosphorylating the isolated 20,000-Da light chain of myosin, as well as the enzyme myosin light chain kinase, has been purified to apparent homogeneity from turkey gizzards. The enzyme has a molecular weight of 165,000 by sedimentation-equilibrium centrifugation under nondenaturing conditions and is composed of three subunits (Mr = 60,000, 55,000, and 38,000) in a 1:1:1 molar ratio. The properties of the holoenzyme, as well as the purified catalytic subunit (Mr = 38,000) were compared using myosin light chains, intact myosin, and myosin light chain kinase as substrates. Although the holoenzyme is active in dephosphorylating the isolated myosin light chains and the enzyme myosin light chain kinase, the holoenzyme does not dephosphorylate myosin. On the other hand, the catalytic subunit of the holoenzyme dephosphorylates all three substrates. When myosin light chain kinase, which has been phosphorylated at two sites is used as substrate, both sites are rapidly dephosphorylated by the phosphatase in the absence of bound calmodulin. If calmodulin is bound to the diphosphorylated kinase, only one site is dephosphorylated. Interestingly, the single site dephosphorylated when calmodulin is bound to myosin light chain kinase is the site that is not phosphorylated when the calmodulin-myosin kinase complex is phosphorylated by cAMP-dependent protein kinase.  相似文献   

13.
We previously proposed a molecular mechanism for the activation of smooth muscle myosin light chain kinase (smMLCK) by calmodulin (CaM). According to this model, smMLCK is autoinhibited in the absence of Ca2+/CaM due to the interaction of a pseudosubstrate prototope, contained within the CaM binding/regulatory region, with the active site of the enzyme. Binding of Ca2+/CaM releases the autoinhibition and allows access of the protein substrate to the active site of the enzyme, resulting in phosphorylation of the myosin light chains. We now provide direct experimental evidence that the pseudosubstrate prototope can associate with the active site. We constructed a smMLCK mutant in which the five-amino acid phosphorylation site of the myosin light chain substrate was inserted into the pseudosubstrate sequence of the CaM binding domain without disrupting the ability of the enzyme to bind Ca2+/CaM. We demonstrate that this mutant undergoes intramolecular autophosphorylation at the appropriate inserted serine residue in the absence of CaM and that this autophosphorylation activates the enzyme. Binding of Ca2+/CaM to the mutant enzyme stimulated myosin light chain substrate phosphorylation but strongly inhibited autophosphorylation, presumably by removing the pseudosubstrate from the active site. These results confirm that the pseudosubstrate sequence has access to the catalytic site and that the activation of the enzyme is accompanied by its removal from this position due to Ca2+/CaM binding as predicted by the model.  相似文献   

14.
Extracellular myeloperoxidase of human myeloid leukemia HL-60 cells was purified to homogeneity from its culture supernatant by ammonium sulfate fractionation, CM-Sepharose column chromatography, and monoclonal antibody-Sepharose affinity column chromatography. The yield of enzyme activity was 38% that of the ammonium sulfate fraction. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified preparation gave a single band of approximately 84 kDa. Analysis of protein blot with antibodies specific for the light and heavy chains of myeloperoxidase indicated that the enzyme contained a light and a heavy chain in a single polypeptide. The amino-terminal amino acid sequence of the enzyme began at amino acid residue 155 of the 745-amino acid sequence predicted from myeloperoxidase cDNA, indicating that the enzyme consisted of 591 amino acids. Sucrose density gradient centrifugation of the enzyme showed that the enzyme was a monomeric form. In pulse-chase experiments on HL-60 cells with [35S]methionine, pulse-labeled myeloperoxidase precursors were shown to be processed to a light chain and a heavy chain of cellular enzyme. During a 3-day chase period, newly formed processed monomeric enzyme was converted to a dimeric form.  相似文献   

15.
An acid proteinase was purified to apparent homogeneity from the plasmodia of a slime mold, Physarum polycephalum, by a combination of detergent extraction, acid precipitation, and column chromatographies on DEAE-Sephadex, hydroxylapatite, CM-Sephadex, and Sephadex G-100. The enzyme was shown to be composed of two polypeptide chains (a 31-kDa heavy chain and a 23-kDa light chain) cross-linked by disulfide bond(s). The NH2-terminal amino acid sequence of the heavy chain was determined to be Ala-Gly-Val- Asp-Gly-Tyr-Ile-Val-Pro-Tyr-Val-Ile-Phe-Asp-Leu-Tyr-Gly-Ile-Pro-Tyr and that of the light chain to be Ala-Glu-Pro-Pro-Ile. The heavy chain contained carbohydrate moiety composed of mannose, glucosamine, fucose, and glucose. The enzyme was optimally active at pH 1.7 toward hemoglobin as a substrate. Among the proteinase inhibitors tested only diazoacetyl-D,L-norleucine methyl ester, a typical aspartic proteinase inhibitor, inhibited the acid proteinase in the presence of cupric ions. It was insensitive to the other typical aspartic proteinase inhibitors, pepstatin A and 1,2-epoxy-3-(p-nitrophenoxy)propane. The enzyme hydrolyzed Lys-Pro-Ile-Glu-Phe(4-NO2)-Arg-Leu at the Phe-Phe(4-NO2) bond, but could not hydrolyze another synthetic pepsin-substrate, N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine. The enzyme showed a unique substrate specificity toward oxidized insulin B chain. The major cleavage sites were the bonds Gly8-Ser9, Leu11-Val12, Cya19-Gly20, and Phe24-Phe25, and the Gly8-Ser9 bond was most susceptible. These results indicate that the enzyme is a novel type of intracellular acid proteinase with a unique substrate specificity.  相似文献   

16.
Myosin light chain kinase can be divided into three distinct structural domains, an amino-terminal "tail," of unknown function, a central catalytic core and a carboxy-terminal calmodulin-binding regulatory region. We have used a combination of deletion mutagenesis and monoclonal antibody epitope mapping to define these domains more closely. A 2.95-kilobase cDNA has been isolated that includes the entire coding sequence of rabbit skeletal muscle myosin light chain kinase (607 amino acids). This cDNA, expressed in COS cells encoded a Ca2+/calmodulin-dependent myosin light chain kinase with a specific activity similar to that of the enzyme purified from rabbit skeletal muscle. Serial carboxy-terminal deletions of the regulatory and catalytic domains were constructed and expressed in COS cells. The truncated kinases had no detectable myosin light chain kinase activity. Monoclonal antibodies which inhibit the activity of the enzyme competitively with respect to myosin light chain were found to bind between residues 235-319 and 165-173, amino-terminal of the previously defined catalytic core. Thus, residues that are either involved in substrate binding or in close proximity to a light chain binding site may be located more amino-terminal than the previously defined catalytic core.  相似文献   

17.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

18.
Enterokinase, a two-chain duodenal serine protease, activates trypsinogen by removing its N-terminal propeptide. Due to a clean cut after the non-primed site recognition sequence, the enterokinase light chain is frequently employed in biotechnology to separate N-terminal affinity tags from target proteins with authentic N-termini. In order to obtain large quantities of this protease, we adapted an in vitro folding protocol for a pentahistidine-tagged triple mutant of the bovine enterokinase light chain. The purified, highly active enzyme successfully processed recombinant target proteins, while the pentahistidine-tag facilitated post-cleavage removal. Hence, we conclude that producing enterokinase in one's own laboratory is an efficient alternative to the commercial enzyme.  相似文献   

19.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

20.
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号