首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
核酸适配体指利用指数富集配体系统进化技术筛选出的寡聚核苷酸片段,它可以特异性地识别靶标并与之结合,已经广泛应用于基础研究、临床诊断、纳米技术等。以下综述了适配体在微生物学方面的应用。  相似文献   

2.
Aptamers are single-stranded DNA or RNA oligonucleotides selected in vitro from combinatorial libraries in a process called SELEX (Systematic Evolution of Ligands by EXponential Enrichment). Aptamers play a role of artificial nucleic acid ligands that can recognize and bind to various organic or inorganic target molecules with high specificity and affinity. They can discriminate even between closely related targets and can be easily chemically modified for radioactive, fluorescent and enzymatic labeling or biostability improvement. Aptamers can thus be considered as universal receptors that rival antibodies in diagnostics as a tool of molecular recognition. To date aptamers have been successively used instead of monoclonal antibodies in flow cytometry, immunochemical sandwich assays and in vivo imaging as well to detect wide range of small or large biomolecules.  相似文献   

3.
适配体传感器在微生物检测中的应用   总被引:1,自引:0,他引:1  
适配体是一类特异的核酸序列,具有靶分子广、特异性强、稳定等优点.该类核酸分子在体外通过SELEX(systematic evolution of ligands by exponential enrichment)技术(系统进化的指数富集技术)鉴定和筛选得到.相对于抗体,适配体为诊断和检测分析系统中的识别配基提供了另一个选择.适配体生物传感器是将生物识别元件和信号转换元件紧密结合,从而检测目标化合物的分析装置.适配体生物传感器在微生物检测方面具有分析速度快、灵敏度高、专一性强等特点,在微生物检测中显示出良好的应用前景.介绍了适配体、SELEX流程以及适配体传感器,综述了适配体传感器在微生物检测中的应用.  相似文献   

4.
适配子在生化分析中的应用进展   总被引:1,自引:0,他引:1  
适配子具有亲和力高、特异性强、靶分子范围广、稳定性好、制备及修饰容易、可重复利用等优点,可以作为与抗体竞争的一类分子识别物质,用于亲和PCR、生物传感器、适配子信标、色谱法、质谱法、毛细管电泳、流式细胞分析及荧光偏振等分析领域,显示出广阔的应用前景。  相似文献   

5.
寡聚核苷酸适配子(Aptamer)是用指数富集式配基系统进化方法(SELEX)筛选出的寡聚核苷酸,它能与靶分子特异性结合,具有识别和抑制靶物质生物学活性的作用。将体外筛选到的寡聚核苷酸适配子作为在动物或人体内应用的药剂,还需要进行化学修饰来提高它的生物利用度和在血浆中的稳定性。2氟、2′烷氧基或2′氨基修饰可以提高适配子的稳定性,使适配子的体外半衰期延长;5′端交联一个高分子量的PEG分子或脂质体分子,可以使它的血浆清除率由1小时提高到几小时至1天。修饰后仍保持生物学活性的适配子可用于治疗相应靶细胞因子引起的疾病。目前,国内外已经筛选到了十几种细胞因子的适配子,其中血管内皮生长因子已经用于临床疾病的治疗。除了用于临床治疗外,适配子还可以用于细胞因子的诊断,凡是涉及抗体的诊断领域,几乎都可以用寡聚核苷酸适配子代替。应用大规模机械化筛选技术,可以在短期内筛选到大量的高特异性、高亲和力适配子,这将有力推动临床诊断和治疗的发展。  相似文献   

6.
Plasmonics - Aptamers are functional small single-strand oligonucleotides (DNA) that show high affinity to their target molecules such as proteins or small analytes through the formation of...  相似文献   

7.
Aptamers are small oligonucleotides that are selected to bind with high affinity and specificity to a target molecule. Aptamers are emerging as a new class of molecules for radiopharmaceutical development. In this study a new method to radiolabel aptamers with technetium-99m (99mTc) was developed. Two aptamers (Apt3 and Apt3-amine) selected against the carcinoembryonic antigen (CEA) were used. Labeling was done by the direct method and the developed complex was subjected to quality control tests. Radiochemical purity and stability were monitored by Thin Layer Chromatography. Binding and specificity assays were carried out in the T84 cell line (CEA+) to evaluate tumor affinity and specificity after radiolabeling. Aptamers were successfully labeled with 99mTc in high radiochemical yields, showing in vitro stability in presence of plasma and cystein. In binding assays the radiolabeled aptamer Apt3-amine showed the highest affinity to T84 cells. When evaluated with HeLa cells (CEA−), lower uptake was observed, suggesting high specificity for this aptamer. These results suggest that the Apt3-amine aptamer directly labeled with 99mTc could be considered a promising agent capable of identifying the carcinoembryonic antigen (CEA) present in tumor cells.  相似文献   

8.
Molecular Biology Reports - Targeted drug delivery vehicles make it possible to deliver anti-cancer drugs to the cells or tissues of interest. Aptamers are peptide or oligonucleotide molecules that...  相似文献   

9.
化疗是目前肿瘤治疗最常见的方法。然而,肿瘤细胞的多药耐药(multidrug resistance,MDR)常导致临床化疗失败及患者的死亡。因此,干预和逆转肿瘤多药耐药,提高化疗效果,对于肿瘤的治疗具有重要的意义。核酸适配体是一种短的单链寡核苷酸,通过折叠形成特定空间结构从而与靶标特异性结合。靶向肿瘤的核酸适配体可以选择性地将治疗性物质(抗癌药物,siRNA,miRNA)和药物载体递送至肿瘤中,对肿瘤进行靶向杀伤。利用核酸适配体靶向多药耐药性肿瘤,能够特异性干预甚至逆转肿瘤的多药耐药性。本文概述了核酸适配体介导的干预与逆转肿瘤多药耐药性的研究进展。  相似文献   

10.
Assays for cytokines using aptamers   总被引:2,自引:0,他引:2  
Aptamers are short nucleic acid sequences that are used as ligands to bind their targets with high affinity. They are generated via the combinatorial chemistry procedure systematic evolution of ligands by exponential enrichment (SELEX). Aptamers have shown much promise towards detection of a variety of protein targets, including cytokines. Specifically, for the determination of cytokines and growth factors, several assays making use of aptamers have been developed, including aptamer-based enzyme-linked immunosorbent assays, antibody-linked oligonucleotide assay, fluorescence (anisotropy and resonance energy transfer) assays, and proximity ligation assays. In this article, the concept of aptamer selection using SELEX and the assay formats using aptamers for the detection of cytokines are discussed.  相似文献   

11.
核酸适配体是指通过指数富集的配体系统进化技术(systematic evolution of ligands by exponential enrichment, SELEX)技术得到的一种可以高特异性、高亲和性识别靶标物质的单链DNA或RNA,可以作为靶向性治疗的分子探针。指数富集的配体系统进化技术即SELEX技术是在体外合成一个随机序列的文库,通过4个步骤孵育、分离、回收、扩增即可获得相对应的核酸适配体。通过几十年的发展,如今SELEX技术已成为一种重要的研究手段。核酸适配体具有稳定性强、分子量小、易进行化学合成和修饰、能特异性结合包括从小分子到细胞等靶标,识别范围广等优点,被广泛应用在肿瘤领域。免疫治疗与传统的肿瘤治疗方式不同,它是增强机体自身免疫系统来达到清除体内肿瘤细胞的一种方式,已被临床证明是治疗多种癌症的有效方法,例如针对免疫检查点CTLA4和PD-L1/PD-1的抗体,临床试验取得了成功,这为肿瘤的治疗带来了新的思路方法。目前,相关的免疫治疗药物已经上市应用于临床治疗,但是通过免疫治疗获益的肿瘤患者相对较少且会产生严重的副作用。核酸适配体与免疫相结合,为肿瘤的治疗提供了...  相似文献   

12.
Aptamers are chemical antibodies that bind to their targets with high affinity and specificity. These short stretches of nucleic acids are identified using a repetitive in vitro selection and partitioning technology called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since the emergence of this technology, many modifications and variations have been introduced to enable the selection of specific ligands, even for implausible targets. For membrane protein, the selection scheme can be chosen depending upon the availability of the system, the protein characteristics and the application required. Aptamers have been generated for a significant number of disease-associated membrane proteins and have been shown to have considerable diagnostic and therapeutic importance. In this article, we review the SELEX process used for identification of aptamers that target cell-surface proteins and recapitulate their use as therapeutic and diagnostic reagents.  相似文献   

13.
抗癌药物的毒副作用限制了其临床应用,纳米药物载体可实现药物在病灶部位的聚集而不影响正常组织,从而降低药物毒副作用.在药物载体表面修饰靶向配体,以提高药物载体主动靶向进入到细胞的能力,可有效地将药物释放到靶细胞,大大提高药效.核酸适配体(aptamer)作为一种新型的靶向分子,近几年已被运用到靶向药物传递的研究中.本文介绍了几种适配体靶向载药体系,如适配体-药物、适配体-脂质体、适配体-聚合物胶束、适配体-聚合物纳米颗粒、适配体-金属颗粒以及适配体-支化聚合物等载药体系,并对当前研究的热点以及存在的问题和不足进行了评述.  相似文献   

14.
Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids, nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.  相似文献   

15.
适配体(Aptamers)是通过指数富集的配体系统进化(systematic evolution of ligands by exponential enrichment,SELEX)技术,从随机核酸文库中筛选出来的单链寡核苷酸,已在临床医疗及其他领域得到日益广泛的应用.与抗体相比,适配体具有很多优点,如高亲和力、高特异性、分子量小、几乎无免疫排斥反应、结构稳定、易于合成等.可用于适配体筛选的靶标范围非常广,包括有机小分子、蛋白、完整细胞及病毒颗粒等.迅速可靠的病原检测对于病毒性传染病的成功预防和治疗具有重要意义.随着严格筛选和快速分离技术的进步,适配体在病毒感染的检测治疗中显示出巨大的潜力.本文概括介绍了适配体在病毒研究方面的最新应用进展及未来前景.  相似文献   

16.
Aptamers-based assays for diagnostics, environmental and food analysis   总被引:1,自引:0,他引:1  
Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a huge library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. In addition to the very important aspect of having an unlimited source of identical affinity recognition molecules available due to the selection process, aptamers can offer advantages over antibodies that make them very promising for analytical applications. The use of aptamers as therapeutic tools is nowadays well established. On the contrary, the analytical application of aptamers in diagnostic devices or in systems for environmental and food analysis, is still under investigation and the scientific community still need further research to demonstrate the advancements brought by this new kind of ligands. This review will focus on these latter applications with particular attention to the detection of food pathogens, terrorism threat agents, thrombin and cytokines.  相似文献   

17.
《Médecine Nucléaire》2007,31(9):478-484
Aptamers are oligonucleotides, generally DNA or RNA but occasionnally chemically modified nucleic acids, which are identified within randomly synthesized libraries containing up to 1015 different candidates. They are obtained following a process of in vitro selection termed systematic evolution of ligands by exponantial enrichment (SELEX) that makes use of iterative steps of selection and amplification. Aptamers were successfully raised against a wide range of targets: amino acids, antibiotics, dyes, peptides, proteins, nucleic acids, intact viruses or live cells. They generally display high affinity (Kd in the nanomolar range or lower are frequent for proteins) and high specificity. They are easily obtained by chemical synthesis and can be converted in tools of interest for diagnostic purposes, by conjugation to various pendant groups. They rival antibodies and can be used in vivo in human beings.  相似文献   

18.
Aptamers as therapeutic and diagnostic agents   总被引:29,自引:0,他引:29  
Aptamers are oligonucleotides derived from an in vitro evolution process called SELEX. Aptamers have been evolved to bind proteins which are associated with a number of disease states. Using this method, many powerful antagonists of such proteins have been found. In order for these antagonists to work in animal models of disease and in humans, it is necessary to modify the aptamers. First of all, sugar modifications of nucleoside triphosphates are necessary to render the resulting aptamers resistant to nucleases found in serum. Changing the 2'OH groups of ribose to 2'F or 2'NH2 groups yields aptamers which are long lived in blood. The relatively low molecular weight of aptamers (8000-12000) leads to rapid clearance from the blood. Aptamers can be kept in the circulation from hours to days by conjugating them to higher molecular weight vehicles. When modified, conjugated aptamers are injected into animals, they inhibit physiological functions known to be associated with their target proteins. A new approach to diagnostics is also described. Aptamer arrays on solid surfaces will become available rapidly because the SELEX protocol has been successfully automated. The use of photo-cross-linkable aptamers will allow the covalent attachment of aptamers to their cognate proteins, with very low backgrounds from other proteins in body fluids. Finally, protein staining with any reagent which distinguishes functional groups of amino acids from those of nucleic acids (and the solid support) will give a direct readout of proteins on the solid support.  相似文献   

19.
Aptamers targeting NF-kappaB containing thymidine 3'-O-phosphorodithioates in selected positions of an oligonucleotide duplex were synthesized. Binding affinities to NF-kappaB varied with the number and positions of the dithioate backbone substitutions. One of the aptamers showed specific binding to a single NF-kappaB dimer in cell culture extracts.  相似文献   

20.
Aptamers are synthetic single-stranded RNA or DNA molecules capable of specific binding to other target molecules. In this review, the main aptamer properties are considered and methods for selection of aptamers against various protein targets are described. Special attention is given to the methods for directed selection of aptamers, which allow one to obtain ligands with specified properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号