首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although tetraloops are one of the most frequently occurring secondary structure motifs in RNA, less than one-third of the 30 most frequently occurring RNA tetraloops have been thermodynamically characterized. Therefore, 24 stem–loop sequences containing common tetraloops were optically melted, and the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each stem–loop were determined. These new experimental values, on average, are 0.7 kcal/mol different from the values predicted for these tetraloops using the model proposed by Vecenie CJ, Morrow CV, Zyra A, Serra MJ. 2006. Biochemistry 45: 1400–1407. The data for the 24 tetraloops reported here were then combined with the data for 28 tetraloops that were published previously. A new model, independent of terminal mismatch data, was derived to predict the free energy contribution of previously unmeasured tetraloops. The average absolute difference between the measured values and the values predicted using this proposed model is 0.4 kcal/mol. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA stem–loops containing tetraloops and, furthermore, should allow for improved prediction of secondary structure from sequence. It was also shown that tetraloops within the sequence 5′-GCCNNNNGGC-3′ are, on average, 0.6 kcal/mol more stable than the same tetraloop within the sequence 5′-GGCNNNNGCC-3′. More systemic studies are required to determine the full extent of non-nearest-neighbor effects on tetraloop stability.  相似文献   

2.
RNases III are a family of double-stranded RNA (dsRNA) endoribonucleases involved in the processing and decay of a large number of cellular RNAs as well as in RNA interference. The dsRNA substrates of Saccharomyces cerevisiae RNase III (Rnt1p) are capped by tetraloops with the consensus sequence AGNN, which act as the primary docking site for the RNase. We have solved the solution structures of two RNA hairpins capped by AGNN tetraloops, AGAA and AGUU, using NMR spectroscopy. Both tetraloops have the same overall structure, in which the backbone turn occurs on the 3' side of the syn G residue in the loop, with the first A and G in a 5' stack and the last two residues in a 3' stack. A non-bridging phosphate oxygen and the universal G which are essential for Rnt1p binding are strongly exposed. The compared biochemical and structural analysis of various tetraloop sequences defines a novel family of RNA tetraloop fold with the consensus (U/A)GNN and implicates this conserved structure as the primary determinant for specific recognition of Rnt1p substrates.  相似文献   

3.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   

4.
Although artificial RNA motifs that can functionally replace the GNRA/receptor interaction, a class of RNA–RNA interacting motifs, were isolated from RNA libraries and used to generate designer RNA structures, receptors for non-GNRA tetraloops have not been found in nature or selected from RNA libraries. In this study, we report successful isolation of a receptor motif interacting with GAAC, a non-GNRA tetraloop, from randomized sequences embedded in a catalytic RNA. Biochemical characterization of the GAAC/receptor interacting motif within three structural contexts showed its binding affinity, selectivity and structural autonomy. The motif has binding affinity comparable with that of a GNRA/receptor, selectivity orthogonal to GNRA/receptors and structural autonomy even in a large RNA context. These features would be advantageous for usage of the motif as a building block for designer RNAs. The isolated motif can also be used as a query sequence to search for unidentified naturally occurring GANC receptor motifs.  相似文献   

5.
Interactions between GNRA tetraloops and their receptors are found frequently as modular units in various types of naturally occurring structured RNAs. Due to their functional importance, GNRA/receptor interactions have been studied extensively with regard to their 3D structures and biochemical and biophysical properties. Artificial non-natural GNRA/receptor modules have also been generated not only to obtain a better understanding of this class of motifs in natural RNA structures but also for application of these modular units to the design and construction of artificial RNA structures that can be used as platforms to generate functional RNAs applicable for nanobiotechnology. In this review, we present a survey of structures, functions, and analyses as well as artificial generation and application of GNRA/receptor interacting modules.  相似文献   

6.
Tetraloops are a common building block for RNA tertiary structure, and most tetraloops fall into one of three well-characterized classes: GNRA, UNCG, and CUYG. Here, we present the sequence and structure of a fourth highly conserved class of tetraloop that occurs only within the ζ-ζ′ interaction of group IIC introns. This GANC tetraloop was identified, along with an unusual cognate receptor, in the crystal structure of the group IIC intron and through phylogenetic analysis of intron RNA sequence alignments. Unlike conventional tetraloop-receptor interactions, which are stabilized by extensive hydrogen-bonding interactions, the GANC-receptor interaction is limited to a single base stack between the conserved adenosine of the tetraloop and a single purine of the receptor, which consists of a one- to three-nucleotide bulge and does not contain an A-platform. Unlike GNRA tetraloops, the GANC tetraloop forms a sharp angle relative to the adjacent helix, bending by approximately 45° toward the major groove side of the helix. These structural attributes allow GANC tetraloops to fit precisely within the group IIC intron core, thereby demonstrating that structural motifs can adapt to function in a specific niche.  相似文献   

7.
Our understanding of RNA functions in the cell is evolving rapidly. As for proteins, the detailed three-dimensional (3D) structure of RNA is often key to understanding its function. Although crystallography and nuclear magnetic resonance (NMR) can determine the atomic coordinates of some RNA structures, many 3D structures present technical challenges that make these methods difficult to apply. The great flexibility of RNA, its charged backbone, dearth of specific surface features, and propensity for kinetic traps all conspire with its long folding time, to challenge in silico methods for physics-based folding. On the other hand, base-pairing interactions (either in runs to form helices or isolated tertiary contacts) and motifs are often available from relatively low-cost experiments or informatics analyses. We present RNABuilder, a novel code that uses internal coordinate mechanics to satisfy user-specified base pairing and steric forces under chemical constraints. The code recapitulates the topology and characteristic L-shape of tRNA and obtains an accurate noncrystallographic structure of the Tetrahymena ribozyme P4/P6 domain. The algorithm scales nearly linearly with molecule size, opening the door to the modeling of significantly larger structures.  相似文献   

8.
RNA structural motifs are recurrent three-dimensional (3D) components found in the RNA architecture. These RNA structural motifs play important structural or functional roles and usually exhibit highly conserved 3D geometries and base-interaction patterns. Analysis of the RNA 3D structures and elucidation of their molecular functions heavily rely on efficient and accurate identification of these motifs. However, efficient RNA structural motif search tools are lacking due to the high complexity of these motifs. In this work, we present RNAMotifScanX, a motif search tool based on a base-interaction graph alignment algorithm. This novel algorithm enables automatic identification of both partially and fully matched motif instances. RNAMotifScanX considers noncanonical base-pairing interactions, base-stacking interactions, and sequence conservation of the motifs, which leads to significantly improved sensitivity and specificity as compared with other state-of-the-art search tools. RNAMotifScanX also adopts a carefully designed branch-and-bound technique, which enables ultra-fast search of large kink-turn motifs against a 23S rRNA. The software package RNAMotifScanX is implemented using GNU C++, and is freely available from http://genome.ucf.edu/RNAMotifScanX.  相似文献   

9.
New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose geometric discrepancy with respect to the query motif falls below a user-specified cutoff discrepancy. This technique can be applied to RMSD searches. Candidate motifs identified geometrically may be further screened symbolically to identify those that contain particular basepair types or base-stacking arrangements or that conform to sequence continuity or nucleotide identity constraints. Purely symbolic searches for motifs containing user-defined sequence, continuity and interaction constraints have also been implemented. We demonstrate that FR3D finds all occurrences, both local and composite and with nucleotide substitutions, of sarcin/ricin and kink-turn motifs in the 23S and 5S ribosomal RNA 3D structures of the H. marismortui 50S ribosomal subunit and assigns the lowest discrepancy scores to bona fide examples of these motifs. The search algorithms have been optimized for speed to allow users to search the non-redundant RNA 3D structure database on a personal computer in a matter of minutes.  相似文献   

10.
Stable RNAs are modular and hierarchical 3D architectures taking advantage of recurrent structural motifs to form extensive non-covalent tertiary interactions. Sequence and atomic structure analysis has revealed a novel submotif involving a minimal set of five nucleotides, termed the UA_handle motif (5′XU/ANnX3′). It consists of a U:A Watson–Crick: Hoogsteen trans base pair stacked over a classic Watson–Crick base pair, and a bulge of one or more nucleotides that can act as a handle for making different types of long-range interactions. This motif is one of the most versatile building blocks identified in stable RNAs. It enters into the composition of numerous recurrent motifs of greater structural complexity such as the T-loop, the 11-nt receptor, the UAA/GAN and the G-ribo motifs. Several structural principles pertaining to RNA motifs are derived from our analysis. A limited set of basic submotifs can account for the formation of most structural motifs uncovered in ribosomal and stable RNAs. Structural motifs can act as structural scaffoldings and be functionally and topologically equivalent despite sequence and structural differences. The sequence network resulting from the structural relationships shared by these RNA motifs can be used as a proto-language for assisting prediction and rational design of RNA tertiary structures.  相似文献   

11.
GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.  相似文献   

12.
To develop molecular tools for the detection and control of RNA molecules whose functions rely on their 3D structures, we have devised a selection system to isolate novel RNA motifs that interact with a target RNA structure within a given structural context. In this system, a GAAA tetraloop and its specific receptor motif (11-ntR) from an artificial RNA ligase ribozyme with modular architecture (the DSL ribozyme) were replaced with a target structure and random sequence, respectively. Motifs recognizing the target structure can be identified by in vitro selection based on ribozyme activity. A model selection targeting GAAA-loop successfully identified motifs previously known as GAAA-loop receptors. In addition, a new selection targeting a C-loop motif also generated novel motifs that interact with this structure. Biochemical analysis of one of the C-loop receptor motifs revealed that it could also function as an independent structural unit.  相似文献   

13.
Single nucleotide RNA choreography   总被引:1,自引:1,他引:0  
New structural analysis methods, and a tree formalism re-define and expand the RNA motif concept, unifying what previously appeared to be disparate groups of structures. We find RNA tetraloops at high frequencies, in new contexts, with unexpected lengths, and in novel topologies. The results, with broad implications for RNA structure in general, show that even at this most elementary level of organization, RNA tolerates astounding variation in conformation, length, sequence and context. However the variation is not random; it is well-described by four distinct modes, which are 3-2 switches (backbone topology variations), insertions, deletions and strand clips.  相似文献   

14.
GNRA tetraloops, found in high frequency in natural RNAs, make loop-receptor interactions, stabilizing the tertiary structure of Group I introns, a class of small RNAs. Analyzing 230 Group I introns, to study the distribution and sequence pattern of the GNRA tetraloops, we suggest that these features reflect the ancestral nature of these catalytic molecules, in a prebiotic RNA world. The adenosine rich GNRA tetraloops would have interacted with each other through long range RNA-RNA interactions to form higher order structures forming potential sites that render the propensity for the short RNAs to bind to metal ions from the prebiotic pool, aiding them to act as metalloenzymes.  相似文献   

15.
The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.  相似文献   

16.

Background  

Alignment of RNA secondary structures is important in studying functional RNA motifs. In recent years, much progress has been made in RNA motif finding and structure alignment. However, existing tools either require a large number of prealigned structures or suffer from high time complexities. This makes it difficult for the tools to process RNAs whose prealigned structures are unavailable or process very large RNA structure databases.  相似文献   

17.
Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download.  相似文献   

18.
To address many challenges in RNA structure/function prediction, the characterization of RNA''s modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.  相似文献   

19.
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson–Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson–Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.  相似文献   

20.
To increase our understanding of the dynamics and complexities of the RNA folding process, and therewith to improve our ability to predict RNA secondary structure by computational means, we have examined the foldings of a large number of phylogenetically and structurally diverse 16S and 16S-like rRNAs and compared these results with their comparatively derived secondary structures. Our initial goals are to establish the range of prediction success for this class of rRNAs, and to begin comparing and contrasting the foldings of these RNAs. We focus here on structural features that are predicted with confidence as well as those that are poorly predicted. Whereas the large set of Archaeal and (eu)Bacterial 16S rRNAs all fold well (69% and 55% respectively), some as high as 80%, many Eucarya and mitochondrial 16S rRNAs are poorly predicted (approximately 30%), with a few of these predicted as low as 10-20%. In general, base pairs interacting over a short distance and, in particular, those closing hairpin loops, are predicted significantly better than long-range base pairs and those closing multistem loops and bulges. The prediction success of hairpin loops varies, however, with their size and context. Analysis of some of the RNAs that do not fold well suggests that the composition of some hairpin loops (e.g., tetraloops) and the higher frequency of noncanonical pairs in their comparatively derived structures might contribute to these lower success rates. Eucarya and mitochondrial rRNAs reveal further novel tetraloop motifs, URRG/A and CRRG, that interchange with known stable tetraloop in the procaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号