首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Otx2 expression in the forebrain and midbrain was found to be regulated by two distinct enhancers (FM and FM2) located at 75 kb 5' upstream and 115 kb 3' downstream. The activities of these two enhancers were absent in anterior neuroectoderm earlier than E8.0; however, at E9.5 their regions of activity spanned the entire mesencephalon and diencephalon with their caudal limits at the boundary with the metencephalon or isthmus. In telencephalon, activities were found only in the dorsomedial aspect. Potential binding sites of OTX and TCF were essential to FM activity, and TCF sites were also essential to FM2 activity. The FM2 enhancer appears to be unique to rodent; however, the FM enhancer region is deeply conserved in gnathostomes. Studies of mutants lacking FM or FM2 enhancer demonstrated that these enhancers indeed regulate Otx2 expression in forebrain and midbrain. Development of mesencephalic and diencephalic regions was differentially regulated in a dose-dependent manner by the cooperation between Otx1 and Otx2 under FM and FM2 enhancers: the more caudal the structure the higher the OTX dose requirement. At E10.5 Otx1-/-Otx2DeltaFM/DeltaFM mutants, in which Otx2 expression under the FM2 enhancer remained, exhibited almost complete loss of the entire diencephalon and mesencephalon; the telencephalon did, however, develop.  相似文献   

6.
The mes/metencephalic boundary (isthmus) has an organizing activity for mesencephalon and metencephalon. The candidate signaling molecule is Fgf8 whose mRNA is localized in the region where the cerebellum differentiates. Responding to this signal, the cerebellum differentiates in the metencephalon and the tectum differentiates in the mesencephalon. Based on the assumption that strong Fgf8 signal induces the cerebellum and that the Fgf8b signal is stronger than that of Fgf8a, we carried out experiments to misexpress Fgf8b and Fgf8a in chick embryos. Fgf8a did not affect the expression pattern of Otx2, Gbx2 or Irx2. En2 expression was upregulated in the mesencephalon and in the diencephalon by Fgf8a. Consequently, Fgf8a misexpression resulted in the transformation of the presumptive diencephalon to the fate of the mesencephalon. In contrast, Fgf8b repressed Otx2 expression, but upregulated Gbx2 and Irx2 expression in the mesencephalon. As a result, Fgf8b completely changed the fate of the mesencephalic alar plate to cerebellum. Quantitative analysis showed that Fgf8b signal is 100 times stronger than Fgf8a signal. Co-transfection of Fgf8b with Otx2 indicates that Otx2 is a key molecule in mesencephalic generation. We have shown by RT-PCR that both Fgf8a and Fgf8b are expressed, Fgf8b expression prevailing in the isthmic region. The results all support our working hypothesis that the strong Fgf8 signal induces the neural tissue around the isthmus to differentiate into the cerebellum.  相似文献   

7.
Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, show a limited amino acid sequence divergence. Their embryonic expression patterns overlap in spatial and temporal profiles with two major exceptions: until 8 days post coitum (d.p.c. ) only Otx2 is expressed in gastrulating embryos, and from 11 d.p.c. onwards only Otx1 is transcribed within the dorsal telencephalon. Otx1 null mice exhibit spontaneous epileptic seizures and multiple abnormalities affecting primarily the dorsal telencephalic cortex and components of the acoustic and visual sense organs. Otx2 null mice show heavy gastrulation abnormalities and lack the rostral neuroectoderm corresponding to the forebrain, midbrain and rostral hindbrain. In order to define whether these contrasting phenotypes reflect differences in expression pattern or coding sequence of Otx1 and Otx2 genes, we replaced Otx1 with a human Otx2 (hOtx2) full-coding cDNA. Interestingly, homozygous mutant mice (hOtx2(1)/hOtx2(1)) fully rescued epilepsy and corticogenesis abnormalities and showed a significant improvement of mesencephalon, cerebellum, eye and lachrymal gland defects. In contrast, the lateral semicircular canal of the inner ear was never recovered, strongly supporting an Otx1-specific requirement for the specification of this structure. These data indicate an extended functional homology between OTX1 and OTX2 proteins and provide evidence that, with the exception of the inner ear, in Otx1 and Otx2 null mice contrasting phenotypes stem from differences in expression patterns rather than in amino acid sequences.  相似文献   

8.
9.
The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master–slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.  相似文献   

10.
11.
To analyze regional differences in the embryonic mouse brain with respect to environmental influence on mitral cell neurites, olfactory bulb fragments were cultured on layers of brain cells which had been dissociated from various regions. Long mitral cell neurites elongated on paleocortex and neocortex cell layers, but not on the septum, mesencephalon, or diencephalon cell layers. Cell membranes prepared from the paleocortex and neocortex also supported outgrowth of long mitral cell neurites, but cell membranes prepared from the septum, mesencephalon, or diencephalon did not. The supportability of mitral cell neurites in the paleocortex and neocortex membranes was completely abolished by trypsin treatment. Neurite outgrowth of the mitral cells on poly-L -lysine was not inhibited by the mesencephalon or diencephalon membranes, but was promoted by the paleocortex and neocortex membranes. These results indicate that the paleocortex and neocortex regions selectively express membrane-bound factors which promote neurite outgrowth of mitral cells. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 415–425, 1997.  相似文献   

12.
13.
14.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

15.
16.
17.
18.
Otx2 is expressed in the mesencephalon and prosencephalon, and Gbx2 is expressed in the rhombencephalon around stage 10. Loss-of-function studies of these genes in mice have revealed that Otx2 is indispensable for the development of the anterior brain segment, and that Gbx2 is required for the development of the isthmus. We carried out gain-of-function experiments of these genes in chick embryos with a newly developed gene transfer system, in ovo electroporation. When Otx2 was ectopically expressed caudally beyond the midbrain-hindbrain boundary (MHB), the alar plate of the metencephalon differentiated into the optic tectum instead of differentiating into the cerebellum. On the other hand, when Gbx2 was ectopically expressed at the mesencephalon, the caudal limit of the tectum shifted rostrally. We looked at the effects of misexpression on the isthmus- and tectum-related molecules. Otx2 and Gbx2 interacted to repress each other's expression. Ectopic Otx2 and Gbx2 repressed endogenous expression of Fgf8 in the isthmus, but induced Fgf8 expression at the interface between Otx2 and Gbx2 expression. Thus, it is suggested that interaction between Otx2 and Gbx2 determines the site of Fgf8 expression and the posterior limit of the tectum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号