共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisweswar Nandi Christine Pai Qin Huang Rao H. Prabhala Nikhil C. Munshi Jason S. Gold 《PloS one》2014,9(5)
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been associated with colorectal cancer growth and metastasis, however, a causal role for CCL20 signaling through CCR6 in promoting intestinal carcinogenesis has not been demonstrated in vivo. In this study, we aimed to determine the role of CCL20-CCR6 interactions in spontaneous intestinal tumorigenesis. CCR6-deficient mice were crossed with mice heterozygous for a mutation in the adenomatous polyposis coli (APC) gene (APCMIN/+ mice) to generate APCMIN/+ mice with CCR6 knocked out (CCR6KO-APCMIN/+ mice). CCR6KO-APCMIN/+ mice had diminished spontaneous intestinal tumorigenesis. CCR6KO-APCMIN/+ also had normal sized spleens as compared to the enlarged spleens found in APCMIN/+ mice. Decreased macrophage infiltration into intestinal adenomas and non-tumor epithelium was observed in CCR6KO-APCMIN/+ as compared to APCMIN/+ mice. CCL20 signaling through CCR6 caused increased production of CCL20 by colorectal cancer cell lines. Furthermore, CCL20 had a direct mitogenic effect on colorectal cancer cells. Thus, interactions between CCL20 and CCR6 promote intestinal carcinogenesis. Our results suggest that the intestinal tumorigenesis driven by CCL20-CCR6 interactions may be driven by macrophage recruitment into the intestine as well as proliferation of neoplastic epithelial cells. This interaction could be targeted for the treatment or prevention of malignancy. 相似文献
2.
3.
4.
Japanese encephalitis is a severe central nervous system (CNS) inflammatory disease caused by the mosquito-borne flavivirus, Japanese encephalitis virus (JEV). In the current study we have investigated the immune responses against JEV in mice lacking expression of the chemokine receptor CCR5, which functions in activation and chemotaxis of leukocytes during infection. We show that CCR5 serves as a host antiviral factor against Japanese encephalitis, with CCR5 deficiency markedly increasing mortality, and viral burden in the CNS. Humoral immune responses, which are essential in recovery from JEV infection, were of similar magnitude in CCR5 sufficient and deficient mice. However, absence of CCR5 resulted in a multifaceted deficiency of cellular immune responses characterized by reduced natural killer and CD8+ T cell activity, low splenic cellularity, and impaired trafficking of leukocytes to the brain. Interestingly, adoptive transfer of immune spleen cells, depleted of B lymphocytes, increased resistance of CCR5-deficient recipient mice against JEV regardless of whether the cells were obtained from CCR5-deficient or wild-type donor mice, and only when transferred at one but not at three days post-challenge. This result is consistent with a mechanism by which CCR5 expression enhances lymphocyte activation and thereby promotes host survival in Japanese encephalitis. 相似文献
5.
6.
Influence of the CCR2-V64I Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor Activity and on Chemokine Receptor Function of CCR2b, CCR3, CCR5, and CXCR4 总被引:7,自引:1,他引:7 下载免费PDF全文
Benhur Lee Benjamin J. Doranz Shalini Rana Yanji Yi Mario Mellado Jose M. R. Frade Carlos Martinez-A. Stephen J. OBrien Michael Dean Ronald G. Collman Robert W. Doms 《Journal of virology》1998,72(9):7450-7458
The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism in CCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor activities, and their effects on the expression and receptor activities of the major HIV-1 coreceptors. CCR2b and CCR2b-V64I were expressed at similar levels, and neither molecule affected the expression or coreceptor activity of CCR3, CCR5, or CXCR4 in cotransfected cell lines. Peripheral blood mononuclear cells (PBMCs) from CCR2-V64I heterozygotes had normal levels of CCR2b and CCR5 but slightly reduced levels of CXCR4. CCR2b and CCR2b-V64I functioned equally well as HIV-1 coreceptors, and CCR2-V64I PBMCs were permissive for HIV-1 infection regardless of viral tropism. The MCP-1-induced calcium mobilization mediated by CCR2b signaling was unaffected by the polymorphism, but MCP-1 signaling mediated by either CCR2b- or CCR2-V64I-encoded receptors resulted in heterologous desensitization (i.e., limiting the signal response of other receptors) of both CCR5 and CXCR4. The heterologous desensitization of CCR5 and CXCR4 signaling by both CCR2 allele receptor types provides a mechanistic link that might help explain the in vivo effects of CCR2 gene variants on progression to AIDS as well as the reported antiviral activity of natural CCR2 ligands. 相似文献
7.
An unconventional interaction between SPCA2, an isoform of the Golgi secretory pathway Ca2+-ATPase, and the Ca2+ influx channel Orai1, has previously been shown to contribute to elevated Ca2+ influx in breast cancer derived cells. In order to investigate the physiological role of this interaction, we examined expression and localization of SPCA2 and Orai1 in mouse lactating mammary glands. We observed co-induction and co-immunoprecipitation of both proteins, and isoform-specific differences in the localization of SPCA1 and SPCA2. Three-dimensional cultures of normal mouse mammary epithelial cells were established using lactogenic hormones and basement membrane. The mammospheres displayed elevated Ca2+ influx by store independent mechanisms, consistent with upregulation of both SPCA2 and Orai1. Knockdown of either SPCA2 or Orai1 severely depleted Ca2+ influx and interfered with mammosphere differentiation. We show that SPCA2 is required for plasma membrane trafficking of Orai1 in mouse mammary epithelial cells and that this function can be replaced, at least in part, by a membrane-anchored C-terminal domain of SPCA2. These findings clearly show that SPCA2 and Orai1 function together to regulate Store-independent Ca2+ entry (SICE), which mediates the massive basolateral Ca2+ influx into mammary epithelia to support the large calcium transport requirements for milk secretion. 相似文献
8.
Do-Wan Shim Kang-Hyuck Heo Young-Kyu Kim Eun-Jeong Sim Tae-Bong Kang Jae-Wan Choi Dae-Won Sim Sun-Hee Cheong Seung-Hong Lee Jeong-Kyu Bang Hyung-Sik Won Kwang-Ho Lee 《PloS one》2015,10(5)
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation. 相似文献
9.
Matthew J. Peirce Matthew Brook Nicholas Morrice Robert Snelgrove Shajna Begum Alessandra Lanfrancotti Clare Notley Tracy Hussell Andrew P. Cope Robin Wait 《PloS one》2010,5(7)
Background
Thymocyte expressed molecule involved in selection 1 (Themis1, SwissProt accession number Q8BGW0) is the recently characterised founder member of a novel family of proteins. A second member of this family, Themis2 ( Q91YX0), also known as ICB1 (Induced on contact with basement membrane 1), remains unreported at the protein level despite microarray and EST databases reporting Themis2 mRNA expression in B cells and macrophages.Methodology/Principal Findings
Here we characterise Themis2 protein for the first time and show that it acts as a macrophage signalling scaffold, exerting a receptor-, mediator- and signalling pathway-specific effect on TLR responses in RAW 264.7 macrophages. Themis2 over-expression enhanced the LPS-induced production of TNF but not IL-6 or Cox-2, nor TNF production induced by ligands for TLR2 (PAM3) or TLR3 (poly I∶C). Moreover, LPS-induced activation of the MAP kinases ERK and p38 was enhanced in cells over-expressing Themis2 whereas the activation of JNK, IRF3 or NF-κB p65, was unaffected. Depletion of Themis2 protein by RNA inteference inhibited LPS-induced TNF production in primary human macrophages demonstrating a requirement for Themis2 in this event. Themis2 was inducibly tyrosine phosphorylated upon LPS challenge and interacted with Lyn kinase (), the Rho guanine nucleotide exchange factor, Vav ( P25911), and the adaptor protein Grb2 ( P27870). Mutation of either tyrosine 660 or a proline-rich sequence (PPPRPPK) simultaneously interrupted this complex and reduced by approximately 50% the capacity of Themis2 to promote LPS-induced TNF production. Finally, Themis2 protein expression was induced during macrophage development from murine bone marrow precursors and was regulated by inflammatory stimuli both in vitro and in vivo. Q60631Conclusions/Significance
We hypothesise that Themis2 may constitute a novel, physiological control point in macrophage inflammatory responses. 相似文献10.
Joshua H. Y. Tan Justin P. Ludeman Jamie Wedderburn Meritxell Canals Pam Hall Stephen J. Butler Deni Taleski Arthur Christopoulos Michael J. Hickey Richard J. Payne Martin J. Stone 《The Journal of biological chemistry》2013,288(14):10024-10034
Chemokine receptors are commonly post-translationally sulfated on tyrosine residues in their N-terminal regions, the initial site of binding to chemokine ligands. We have investigated the effect of tyrosine sulfation of the chemokine receptor CCR2 on its interactions with the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Inhibition of CCR2 sulfation, by growth of expressing cells in the presence of sodium chlorate, significantly reduced the potency for MCP-1 activation of CCR2. MCP-1 exists in equilibrium between monomeric and dimeric forms. The obligate monomeric mutant MCP-1(P8A) was similar to wild type MCP-1 in its ability to induce leukocyte recruitment in vivo, whereas the obligate dimeric mutant MCP-1(T10C) was less effective at inducing leukocyte recruitment in vivo. In two-dimensional NMR experiments, sulfated peptides derived from the N-terminal region of CCR2 bound to both the monomeric and dimeric forms of wild type MCP-1 and shifted the equilibrium to favor the monomeric form. Similarly, MCP-1(P8A) bound more tightly than MCP-1(T10C) to the CCR2-derived sulfopeptides. NMR chemical shift mapping using the MCP-1 mutants showed that the sulfated N-terminal region of CCR2 binds to the same region (N-loop and β3-strand) of both monomeric and dimeric MCP-1 but that binding to the dimeric form also influences the environment of chemokine N-terminal residues, which are involved in dimer formation. We conclude that interaction with the sulfated N terminus of CCR2 destabilizes the dimerization interface of inactive dimeric MCP-1, thus inducing dissociation to the active monomeric state. 相似文献
11.
Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor (VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are structurally and functionally different. Here, we develop and validate a computational model of the binding of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these VEGF isoforms. In capturing essential features of VEGFR2 signaling and trafficking, our model suggests that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines. Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214. This is the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 without an intrinsic difference in receptor activation. The model predicts that Neuropilin-1 can induce differences in the surface-to-internal distribution of VEGFR2. Simulations also show that ligated VEGFR2 and phosphorylated VEGFR2 levels diverge over time following stimulation. Using this model, we identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our single consistent model framework. 相似文献
12.
Keqiang Chen Mingyong Liu Ying Liu Chunyan Wang Teizo Yoshimura Wanghua Gong Yingying Le Lino Tessarollo Ji Ming Wang 《The Journal of biological chemistry》2013,288(23):16262-16273
Chemoattractant receptors regulate leukocyte accumulation at sites of inflammation. In allergic airway inflammation, although a chemokine receptor CCR2 was implicated in mediating monocyte-derived dendritic cell (DC) recruitment into the lung, we previously also discovered reduced accumulation of DCs in the inflamed lung in mice deficient in formylpeptide receptor Fpr2 (Fpr2−/−). We therefore investigated the role of Fpr2 in the trafficking of monocyte-derived DCs in allergic airway inflammation in cooperation with CCR2. We report that in allergic airway inflammation, CCR2 mediated the recruitment of monocyte-derived DCs to the perivascular region, and Fpr2 was required for further migration of the cells into the bronchiolar area. We additionally found that the bronchoalveolar lavage liquid from mice with airway inflammation contained both the CCR2 ligand CCL2 and an Fpr2 agonist CRAMP. Furthermore, similar to Fpr2−/− mice, in the inflamed airway of CRAMP−/− mice, DC trafficking into the peribronchiolar areas was diminished. Our study demonstrates that the interaction of CCR2 and Fpr2 with their endogenous ligands sequentially mediates the trafficking of DCs within the inflamed lung. 相似文献
13.
6-C-kine (SLC), a Lymphocyte Adhesion-triggering Chemokine Expressed by High Endothelium, Is an Agonist for the MIP-3β Receptor CCR7 下载免费PDF全文
James J. Campbell Edward P. Bowman Kristine Murphy Kenneth R. Youngman Michael A. Siani Darren A. Thompson Lijun Wu Albert Zlotnik Eugene C. Butcher 《The Journal of cell biology》1998,141(4):1053-1059
The β chemokine known as 6-C-kine, secondary lymphoid-tissue chemokine (SLC), TCA4, or Exodus-2 (herein referred to as 6CK/SLC) can trigger rapid integrin-dependent arrest of lymphocytes rolling under physiological shear and is highly expressed by high endothelial venules, specialized vessels involved in lymphocyte homing from the blood into lymph nodes and Peyer's patches. We show that 6CK/SLC is an agonist for the lymphocyte chemoattractant receptor, CCR7 (EBI-1, BLR-2), previously described as a receptor for the related β chemokine MIP-3β (ELC or Exodus-3). Moreover, 6CK/SLC and MIP-3β attract the same major populations of circulating lymphocytes, including naive and memory T cells > B cells (but not natural killer cells); desensitization to MIP-3β inhibits lymphocyte chemotaxis to 6CK/SLC but not to the α chemokine SDF-1 (stromal cell–derived factor); and 6CK/SLC competes for MIP-3β binding to resting mouse lymphocytes. The findings suggest that the majority of circulating lymphocytes respond to 6CK/SLC and MIP-3β in large part through their common receptor CCR7 and that these molecules may be important mediators of physiological lymphocyte recirculation in vivo. 相似文献
14.
Hui-Qiong He Erica L. Troksa Gianluigi Caltabiano Leonardo Pardo Richard D. Ye 《The Journal of biological chemistry》2014,289(4):2295-2306
Unlike formyl peptide receptor 1 (FPR1), FPR2/ALX (FPR2) interacts with peptides of diverse sequences but has low affinity for the Escherichia coli-derived chemotactic peptide fMet-Leu-Phe (fMLF). Using computer modeling and site-directed mutagenesis, we investigated the structural requirements for FPR2 to interact with formyl peptides of different length and composition. In calcium flux assay, the N-formyl group of these peptides is necessary for activation of both FPR2 and FPR1, whereas the composition of the C-terminal amino acids appears more important for FPR2 than FPR1. FPR2 interacts better with pentapeptides (fMLFII, fMLFIK) than tetrapeptides (fMLFK, fMLFW) and tripeptide (fMLF) but only weakly with peptides carrying negative charges at the C terminus (e.g. fMLFE). In contrast, FPR1 is less sensitive to negative charges at the C terminus. A CXCR4-based homology model of FPR1 and FPR2 suggested that Asp-2817.32 is crucial for the interaction of FPR2 with certain formyl peptides as its negative charge may be repulsive with the terminal COO- group of fMLF and negatively charged Glu in fMLFE. Asp-2817.32 might also form a stable interaction with the positively charged Lys in fMLFK. Site-directed mutagenesis was performed to remove the negative charge at position 281 in FPR2. The D2817.32G mutant showed improved affinity for fMLFE and fMLF and reduced affinity for fMLFK compared with wild type FPR2. These results indicate that different structural determinants are used by FPR1 and FPR2 to interact with formyl peptides. 相似文献
15.
NTF2 is a cytosolic protein responsible for nuclear import of Ran, a small Ras-like GTPase involved in a number of critical cellular processes, including cell cycle regulation, chromatin organization during mitosis, reformation of the nuclear envelope following mitosis, and controlling the directionality of nucleocytoplasmic transport. Herein, we provide evidence for the first time that translocation of the mammalian NTF2 from the nucleus to the cytoplasm to collect Ran in the GDP form is subjected to regulation. Treatment of mammalian cells with polysorbitan monolaurate was found to inhibit nuclear export of tRNA and proteins, which are processes dependent on RanGTP in the nucleus, but not nuclear import of proteins. Inhibition of the export processes by polysorbitan monolaurate is specific and reversible, and is caused by accumulation of Ran in the cytoplasm because of a block in translocation of NTF2 to the cytoplasm. Nuclear import of Ran and the nuclear export processes are restored in polysorbitan monolaurate treated cells overproducing NTF2. Moreover, increased phosphorylation of a phospho-tyrosine protein and several phospho-threonine proteins was observed in polysorbitan monolaurate treated cells. Collectively, these findings suggest that nucleocytoplasmic translocation of NTF2 is regulated in mammalian cells, and may involve a tyrosine and/or threonine kinase-dependent signal transduction mechanism(s). 相似文献
16.
Karen M. Lammers Marcello Chieppa Lunhua Liu Song Liu Tatsushi Omatsu Mirkka Janka-Junttila Vincenzo Casolaro Hans-Christian Reinecker Carole A. Parent Alessio Fasano 《PloS one》2015,10(9)
Background
Gliadin, the immunogenic component within gluten and trigger of celiac disease, is known to induce the production of Interleukin-8, a potent neutrophil-activating and chemoattractant chemokine. We sought to study the involvement of neutrophils in the early immunological changes following gliadin exposure.Methods
Utilizing immunofluorescence microscopy and flow cytometry, the redistribution of major tight junction protein, Zonula occludens (ZO)-1, and neutrophil recruitment were assessed in duodenal tissues of gliadin-gavaged C57BL/6 wild-type and Lys-GFP reporter mice, respectively. Intravital microscopy with Lys-GFP mice allowed monitoring of neutrophil recruitment in response to luminal gliadin exposure in real time. In vitro chemotaxis assays were used to study murine and human neutrophil chemotaxis to gliadin, synthetic alpha-gliadin peptides and the neutrophil chemoattractant, fMet-Leu-Phe, in the presence or absence of a specific inhibitor of the fMet-Leu-Phe receptor-1 (FPR1), cyclosporine H. An irrelevant protein, zein, served as a control.Results
Redistribution of ZO-1 and an influx of CD11b+Lys6G+ cells in the lamina propria of the small intestine were observed upon oral gavage of gliadin. In vivo intravital microscopy revealed a slowing down of GFP+ cells within the vessels and influx in the mucosal tissue within 2 hours after challenge. In vitro chemotaxis assays showed that gliadin strongly induced neutrophil migration, similar to fMet-Leu-Phe. We identified thirteen synthetic gliadin peptide motifs that induced cell migration. Blocking of FPR1 completely abrogated the fMet-Leu-Phe-, gliadin- and synthetic peptide-induced migration.Conclusions
Gliadin possesses neutrophil chemoattractant properties similar to the classical neutrophil chemoattractant, fMet-Leu-Phe, and likewise uses FPR1 in the process. 相似文献17.
Recent studies have identified Ca2+ stores in sperm cells; however, it is not clear whether these Ca2+ stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca2+, TPIII antagonists elevated the intracellular Ca2+ levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca2+ could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca2+ channels responsible for releasing stored Ca2+. Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca2+ stores via the type 3 RyR. 相似文献
18.
Parker C. Wilson Mi-Hye Lee Kathryn M. Appleton Hesham M. El-Shewy Thomas A. Morinelli Yuri K. Peterson Louis M. Luttrell Ayad A. Jaffa 《The Journal of biological chemistry》2013,288(26):18872-18884
The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar1,Ile4,Ile8]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar1,Ile4, Ile8]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar1,Ile4,Ile8]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar1,Ile4,Ile8]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar1,Ile4,Ile8]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar1,Ile4,Ile8]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions. 相似文献
19.
Hong-Min Kim Eun Soo Lee Bo Ra Lee Dhananjay Yadav You Mi Kim Hyun-Jeong Ko Kyu Sang Park Eun Young Lee Choon Hee Chung 《PloS one》2015,10(3)
Hepatic steatosis is the accumulation of excess fat in the liver. Recently, hepatic steatosis has become more important because it occurs in the patients with obesity, type 2 diabetes, and hyperlipidemia and is associated with endoplasmic reticulum (ER) stress and insulin resistance. C-C chemokine receptor 2 (CCR2) inhibitor has been reported to improve inflammation and glucose intolerance in diabetes, but its mechanisms remained unknown in hepatic steatosis. We examined whether CCR2 inhibitor improves ER stress-induced hepatic steatosis in type 2 diabetic mice. In this study, db/db and db/m (n = 9) mice were fed CCR2 inhibitor (2 mg/kg/day) for 9 weeks. In diabetic mice, CCR2 inhibitor decreased plasma and hepatic triglycerides levels and improved insulin sensitivity. Moreover, CCR2 inhibitor treatment decreased ER stress markers (e.g., BiP, ATF4, CHOP, and XBP-1) and inflammatory cytokines (e.g., TNFα, IL-6, and MCP-1) while increasing markers of mitochondrial biogenesis (e.g., PGC-1α, Tfam, and COX1) in the liver. We suggest that CCR2 inhibitor may ameliorate hepatic steatosis by reducing ER stress and inflammation in type 2 diabetes mellitus. 相似文献