首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rajawat J  Vohra I  Mir HA  Gohel D  Begum R 《The FEBS journal》2007,274(21):5611-5618
Dictyostelium discoideum, a unicellular eukaryote, exhibits multicellularity upon nutrient starvation and is a good model system for developmental studies, and for the study of various signal transduction pathways. Reactive oxygen species at low doses act as signaling molecules; however, at high doses they are known to cause DNA damage that results in the activation of poly(ADP-ribose) polymerase (PARP). We have earlier reported the high resistance of the unicellular stage of D. discoideum to oxidative stress, and we now show the response of this organism to oxidative stress and the role of PARP during development. We used hydroxylamine (HA) to induce in situ generation of H(2)O(2) and monitored the effect of benzamide, a PARP inhibitor, on oxidative stress-induced changes in D. discoideum development. Interestingly, oxidative stress resulted in PARP activation within 5 min that was inhibited by benzamide. Oxidative stress-induced delay in developmental pattern was also partially restored by benzamide. We studied the long-term effects of PARP inhibition under oxidative stress, and our results demonstrated that spores formed under HA stress exhibited significant delay in germination in comparison to benzamide-pretreated HA-stressed cells. However, second-generation cells showed normal development, signifying that PARP inhibition has no deleterious effect on D. discoideum development under oxidative stress.  相似文献   

2.
Jojoba explants were cultured under four levels of mannitol (control plus 50, 100, 250 and 500 mM mannitol)-induced osmotic stress during the proliferation stage in vitro. Explants grown under control condition exhibited the highest growth, while the more severe the stress was, the lower was the growth of explants. Electrolyte leakage, lipid peroxidation, H2O2 content and proline concentration were highest and relative water content lowest under the highest level of osmotic stress. Concentration of phenolic compounds (total phenolic compounds, o-diphenols and flavanols, as well as protocatechuic, vanillic, p-coumaric and ferulic acids and rutin), putrescine and total polyamines decreased with increasing stress level. Mannitol, glucose and pinitol concentrations increased, whereas that of inositol decreased with increasing stress level. Explants were transferred to the rooting stage, separately per stress treatment. Explants grown under stress conditions during the proliferation stage exhibited lower rooting percentage than controls, as the stress became more severe, the lower was the rooting response. Jojoba tolerated osmotic stress to some extent (till 100–250 mM mannitol), exhibiting sufficient growth rate and good rooting response as well as low oxidative damage (based on electrolyte leakage and lipid peroxidation indices).  相似文献   

3.
BACKGROUND: Chronic stress, mediated by adrenal hormones, is a major risk factor in the progression and outcome of human disease. While the secretion of adrenal hormones is known to be the primary endocrine mediator of stress-induced immunocompromise, the molecular mechanisms underlying the immunocompromise remain unspecified. Overproduction of the nuclear enzyme, poly (ADP-ribose) polymerase (PARP) has been implicated in the molecular pathway that leads to cell death by energy depletion following stress. MATERIALS AND METHODS: Wild-type (WT) mice and mice with targeted disruption of the gene encoding PARP-1 (PARP-1 -/-) were subjected to 2 wk daily cold-water swim; splenocyte proliferation, anti-KLH IgG, and serum corticosterone concentrations were assessed. Additional mice of each genotype received daily i.p. injections of dexamethasone (DEX) (0.75 mg/kg) for 2 wk, and splenocyte proliferation and anti-KLH IgG were assessed. RESULTS: Splenocyte proliferation and specific antibody concentrations of stressed WT mice were reduced by ~20% of their pre-stress levels. In contrast, PARP-1 -/- mice maintained normal cell-mediated and humoral immune function following enforced cold-water swim stress. PARP-1 -/- mice also failed to compromise immune function following DEX treatment, whereas WT mice displayed significant reductions of immune function following this treatment. CONCLUSIONS: These results provide support for the involvement of PARP activation in immunological damage following physical stress. These results suggest that glucocorticoid-induced immunosuppression may require the activation of PARP in order for apoptosis of immune cells to take place. Taken together, these results suggest that therapies designed to inhibit PARP may prove valuable in the treatment of stress-related diseases.  相似文献   

4.
The erstwhile developed temperature-humidity index (THI) has been popularly used to indicate heat stress in dairy cattle and often in buffaloes. However, scientific literature suggests differences in thermotolerance and physiological responses to heat stress between cattle and buffalo. Therefore, THI range used to indicate degree of heat stress (mild, moderate, and severe) in cattle should be recalibrated for indicating heat stress in buffaloes. The present study was carried out to delineate THI range to indicate onset and severity of heat stress in buffaloes based on physiological, biochemical, and expression profiling of heat shock response (HSR) genes in animals at different THI. The result indicated early onset of heat stress in buffaloes as compared to cattle. Physiological and biochemical parameters indicated onset of mild signs of heat stress in buffaloes at THI 68-69. Significant deviation in these parameters was again observed at THI range 73-76. At THI 77-80, the physiological and biochemical responses of animals were further intensified indicating extreme alteration in homeostasis. The in vivo expression profiling of HSR genes indicated that members of Hsp70 gene family are expressed in a temporal pattern over different THIs, whereas expressions of Hsf genes were evident during intense heat stress. Overall, the study established that amplitude of heat shock response and THI range for indicating severity of thermal stress for buffaloes are not in unison to cattle. The study also suggests skin temperature of the poll region could be used as non-invasive tool for monitoring heat stress in dairy buffaloes.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01209-1.  相似文献   

5.
In this study, we have focused on those components of Photosystem (PS) II which are significantly affected by dual stress (high salt and temperature) on wheat as measured by Plant Efficiency Analyser (PEA). It was observed that some of the chlorophyll a fluorescence parameters were temperature dominated, while some other parameters were salt dominated. We have also observed additive effects for parameters like antenna size heterogeneity. An important observation was that in high temperature alone, the K-step was observed at 40 °C, while in case of dual stress, the K-step was observed at 45 °C, while the Chl a fluorescence transient of 40 °C?+?0.5 M?NaCl was quite similar to 35 °C transient curve. In the presence of salt, K-step was observed at higher temperature suggesting a protection of OEC by salt. Plants are under dual stress, but effect of temperature stress is less severe in presence of salt stress. Thus, we can say that salt stress caused partial prevention from high temperature stress but it did not cause complete protection of PS II.  相似文献   

6.
7.
Hippophae salicifolia (HS) and Hippophae rhamnoides turkestanica (HRT) are abundantly found species of Hippophae in Himalayan region of India. As these plants thrive under extreme climatic conditions, it is suspected that these plants must have a unique adaptogenic property against high-altitude stress. To keeping these views in our mind, the present study was planned to evaluate the mechanism of action of aqueous extract of HS and aqueous extract of HRT against multiple stress [cold-hypoxia-restraint (C-H-R)] for their adaptogenic activity. The present study reported the adaptogenic activity of HS in facilitating tolerance to multiple stress, CHR in rats. Pre-treatment with aqueous extract of HS significantly attenuated reactive oxygen species (ROS) production, protein oxidation, and lipid peroxidation and also showed role in maintaining antioxidant status as similar to control rats. Since protein oxidation was decreased by pre-treatment of HS, protein homeostasis was also sustained by regulation of heat shock proteins (HSP70 and HSP60). Interestingly, heme oxygenase-1 (HO-1), Vascular Endothelial Growth Factor (VEGF), and nitric oxide (NO) level was also increased in HS pre-treated rats depicted its adaptogenic activity against multiple stress, CHR. Conclusively, aqueous extract of HS could use an adaptogen for high altitude-associated multiple stress (CHR).  相似文献   

8.
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions.Key messageCuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress.  相似文献   

9.
10.
Aspergillus parasiticus (255), a non-toxigenic isolate showed the presence of secondary metabolites-aflatoxins (B1, B2, G1, G2) when grown in yeast extract sucrose media but not in basal media, thus demonstrating its toxigenic potential. Native PAGE of the crude protein isolated at different growth periods of A. parasiticus in yeast extract sucrose media containing iron showed prominent expression of mycoferritin from day four onwards. The production of aflatoxins was also maximal on day four, both in the presence and absence of iron. Indicators of oxidative stress metabolites such as reactive oxygen species, thiobarbituric acid reactive species, reduced and oxidized glutathione and antioxidant enzymes like superoxide dismutase and glutathione peroxidase were analyzed both in the presence and absence of iron and the experimental data suggest oxidative stress as a pre-requisite for aflatoxin production. The pro-oxidant role of iron was minimized by induction of mycoferritin and the concomitant alterations in oxidative stress parameters imply an antioxidant role to mycoferritin in secondary metabolism, a finding of significance that has not been reported previously in fungal systems.  相似文献   

11.
Muqbil I  Azmi AS  Banu N 《FEBS letters》2006,580(16):3995-3999
Over the years, several lines of evidence have emerged supporting the role of stress in the development and progression of cancer. Stress can cause an increase in the production of reactive oxygen species (ROS) and decrease in the in vivo antioxidant defense systems. A ROS-induced DNA damage in peripheral lymphocytes, liver and skin cells may be revealed by Comet assay. To test whether DNA is damaged by stress/DMBA/stress and DMBA, rats were exposed to multiple doses of DMBA in the presence and absence of restraint stress, and DNA damage was evaluated. Insignificant differences were detected in all the three cells tested (peripheral lymphocytes, liver and skin cells) between control and stress treatment in terms of frequencies of damaged DNA. The extent of DNA migration was enhanced in DMBA treated rats in a dose dependent manner. Pre-stress DMBA treatment showed still higher frequencies of damage in comparison with control, stress alone or DMBA alone groups. Thus, prior exposure to stress clearly enhanced the DMBA induced DNA damage, especially so in the skin cells (target organ of the carcinogen application) than liver and peripheral lymphocytes as observed on the basis of the extent of DNA migration (tail DNA) during single cell gel electrophoresis.  相似文献   

12.
Eight-week-old plants of Puccinellia tenuiflora (Griseb.) Scribn. et Merr. growing in pots filled with vermiculite were stressed by treating with 12.5–800 mmol/L solutions of neutral satt(NaC1) or basic salt(Na2CO3). Strain indexes such as relative growth rate etc. were determined. There was a significant difference between the two kinds of stresses. Maximum stress value that P. tenuiflora plants can tolerate is 60 mmol/L for the neutral salt and 200 mmol/L for the basic salt Na2CO3. Under NaCl-stress, great amount of proline accumulated, and citric acid content gradually decreased. But under Na2CO3-stress, proline content did not raise too much and citric acid content obviously increased with the increasing stress value. Under both stress conditions, Na+ content increased and K+ content decreased with the increasing stress value, but the effect of NaCl-stress on K+ content in roots and shoots was much less than that of Na2CO3-stress. In both stresses, the elevation of electrolyte leakage rate of leaf orchestrated with the change of stress value. This finding represented the only similarity among the strain indexes determined in both stresses.  相似文献   

13.
Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.  相似文献   

14.
mTOR complex 1 (mTORC1) is a multiprotein complex that integrates diverse signals including growth factors, nutrients, and stress to control cell growth. Raptor is an essential component of mTORC1 that functions to recruit specific substrates. Recently, Raptor was suggested to be a key target of regulation of mTORC1. Here, we show that Raptor is phosphorylated by JNK upon osmotic stress. We identified that osmotic stress induces the phosphorylation of Raptor at Ser-696, Thr-706, and Ser-863 using liquid chromatography-tandem mass spectrometry. We found that JNK is responsible for the phosphorylation. The inhibition of JNK abolishes the phosphorylation of Raptor induced by osmotic stress in cells. Furthermore, JNK physically associates with Raptor and phosphorylates Raptor in vitro, implying that JNK is responsible for the phosphorylation of Raptor. Finally, we found that osmotic stress activates mTORC1 kinase activity in a JNK-dependent manner. Our findings suggest that the molecular link between JNK and Raptor is a potential mechanism by which stress regulates the mTORC1 signaling pathway.  相似文献   

15.
Social stressors evolving from individual and population interactions produce stress reactions in many organisms (including humans), influencing homeostasis, altering the activity of the immunological system, and thus leading to various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) in cancer promotion and to assess oxidative stress outcomes in terms of various in vivo biochemical parameters, oxidative stress markers, DNA damage, and the development of skin tumors in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz(a)anthracene (DMBA) alone (topical), and DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical) and exposure to CUS prior to DMBA or DMBA-TPA treatments and sacrificed after 16 weeks of treatment. Prior exposure to CUS significantly increased the pro-oxidant effect of carcinogen, depicted by compromised levels of antioxidants in the circulation and skin, accompanied by enhanced lipid peroxidation, plasma corticosterone, and marker enzymes as compared to DMBA-alone or DMBA-TPA treatments. DNA damage results corroborated the above biochemical outcomes. Also, the development of skin tumors (in terms of their incidence, tumor yield, and tumor burden) in mice in the presence and absence of stress further strongly supported our above biochemical measurements. CUS may work as a promoter of carcinogenesis by enhancing the pro-oxidant potential of carcinogens. Further studies may be aimed at the development of interventions for disease prevention by identifying the relations between psychological factors and DNA damage.  相似文献   

16.
Cu~(2 )、Zn~(2 )诱导稀有鮈鲫应激蛋白质的研究   总被引:1,自引:0,他引:1  
以稀有鮈鲫为材料,研究了应激蛋白质作为生物学指标的敏感性。结果表明,在无可观察效应浓度下,经5d亚慢性胁迫暴露,以Cu2+为胁迫因子,稀有鮈鲫被诱导出约54KDa的应激蛋白质;以Zn2+为胁迫因子,稀有鮈鲫被诱导出约94KDa,67KDa和40KDa的应激蛋白质。应激蛋白质有可能成为一种生物学指标运用于生态风险性早期预警。  相似文献   

17.
This review describes a role of stress in formation of the primary drug-taking behaviour and the effects of stress on a drug-seeking behaviour after withdrawal of drugs. The psychophysiological and neurochemical mechanisms of the rewarding and aversive states during a drug taking and after its withdrawal are considered. A role of separate neurotransmitters and their interactions in formation of drug dependence and the effects of stress on neuroadaptive changes in these neurotransmitter systems are described. A review of the structures involved in mediation of the stress effects and a drug-seeking behaviour is also discussed.  相似文献   

18.
Sugarcane (Saccharum officinarum L. cv. CP72-2086) was grown in sunlit greenhouses at daytime [CO(2)] of 360 (ambient) and 720 (elevated)mumolmol(-1). Drought stress was imposed for 13d when plants were 4 months old, and various photosynthetic parameters and levels of nonstructural carbohydrates were determined for uppermost fully expanded leaves of well-watered (control) and drought stress plants. Control plants at elevated [CO(2)] were 34% and 25% lower in leaf stomatal conductance (g(s)) and transpiration rate (E) and 35% greater in leaf water-use efficiency (WUE) than their counterparts at ambient [CO(2)]. Leaf CO(2) exchange rate (CER) and activities of Rubisco, NADP-malate dehydrogenase, NADP-malic enzyme and pyruvate P(i) dikinase were marginally affected by elevated [CO(2)], but were reduced by drought, whereas activity of PEP carboxylase was reduced by elevated [CO(2)], but not by drought. At severe drought developed at day 12, leaf g(s) and WUE of ambient-[CO(2)] stress plants declined to 5% and 7%, while elevated-[CO(2)] stress plants still maintained g(s) and WUE at 20% and 74% of their controls. In control plants, elevated [CO(2)] did not enhance the midday levels of starch, sucrose, or reducing sugars. For both ambient- and elevated-[CO(2)] stress plants, severe drought did not affect the midday level of sucrose but substantially reduced that of starch. Nighttime starch decomposition in control plants was 55% for ambient [CO(2)] and 59% for elevated [CO(2)], but was negligible for stress plants of both [CO(2)] treatments. For both ambient-[CO(2)] control and stress plants, midday sucrose level at day 12 was similar to the predawn value at day 13. In contrast, sucrose levels of elevated-[CO(2)] control and stress plants at predawn of day 13 were 61-65% of the midday values of day 12. Levels of reducing sugars were much greater for both ambient- and elevated-[CO(2)] stress plants, implying an adaptation to drought stress. Sugarcane grown at elevated [CO(2)] had lower leaf g(s) and E and greater leaf WUE, which helped to delay the adverse effects of drought and, thus, allowed the stress plants to continue photosynthesis for at least an extra day during episodic drought cycles.  相似文献   

19.
The research activity of the physiological laboratories (Medical and Hygienic Institute, Cluj-Napoca, Roumania) in the area of stress studies is described from three aspects: a) Methods of stress provocation and assessment; b) The effects of hormones, especially of anterior pituitary, on the adaptation to physical load; c) Nervous and endocrine factors of stress (physical exertion, fatigue, high pressure, anoxia).  相似文献   

20.
The fitness of an organism can be affected by conditions experienced during early development. In light of the impact that oxidative stress can have on the health and ageing of a bird species, this study evaluated factors accounting for the variation in oxidative stress levels in nestlings of the Eurasian kestrel (Falco tinnunculus) by measuring the serum concentration of reactive oxygen metabolites and the serum antioxidant barrier against hypochlorite-induced oxidation. The ratio between these two variables was considered as an index of oxidative stress, with higher values meaning higher oxidative damage. Six-chick broods showed the highest level of oxidative stress, while no effect of sex was found. Age showed an inverse relationship with the oxidants and the levels of oxidative stress, with younger birds having higher levels. Hatching date, body condition, body mass and carotenoid concentration did not show any relationship with oxidants, antioxidants or degree of oxidative stress. These findings suggest that intrabrood sibling competition could play a role in determining oxidative stress, and that in carnivorous birds other antioxidant molecules could be more important than carotenoids to reduce oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号