首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li J  Byeon IJ  Ericson K  Poi MJ  O'Maille P  Selby T  Tsai MD 《Biochemistry》1999,38(10):2930-2940
Since the structures of several ankyrin-repeat proteins including the INK4 (inhibitor of cyclin-dependent kinase 4) family have been reported recently, the detailed structures and the functional roles of the loops have drawn considerable interest. This paper addresses the potential importance of the loops of ankyrin-repeat proteins in three aspects. First, the solution structure of p18INK4C was determined by NMR, and the loop structures were analyzed in detail. The loops adapt nascent antiparallel beta-sheet structures, but the positions are slightly different from those in the crystal structure. A detailed comparison between the solution structures of p16 and p18 has also been presented. The determination of the p18 solution structure made such detailed comparisons possible for the first time. Second, the [1H,15N]HSQC NMR experiment was used to probe the interactions between p18INK4C and other proteins. The results suggest that p18INK4C interacts very weakly with dna K and glutathione S-transferase via the loops. The third aspect employed site-specific mutagenesis and functional assays. Three mutants of p18 and 11 mutants of p16 were constructed to test functional importance of loops and helices. The results suggest that loop 2 is likely to be part of the recognition surface of p18INK4C or p16INK4A for CDK4, and they provide quantitative functional contributions of specific residues. Overall, our results enhance understanding of the structural and functional roles of the loops in INK4 tumor suppressors in particular and in ankyrin-repeat proteins in general.  相似文献   

3.
4.
The tumor suppressor gene p16INK4A is a cyclin-dependent kinase inhibitor (CDKI) and an important cell cycle regulator. We have previously constructed a recombinant adenovirus which expresses p16 (Adp16) and shown that infection in a variety of human tumor cell lines with this recombinant virus results in high levels of p16INK4A protein expression resulting in cell cycle arrest and loss of cyclin-cdk activity. Furthermore, adenoviral-mediated overexpression of wild-type p16INK4A is more toxic in cancer cells which express mutant forms of p16INK4A compared to cancer cell lines containing endogenous wild-type p16. TUNEL assay and DAPI staining following infection of MDA-MB 231 breast cancer cells with Adp16 indicate that p16INK4A-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating a decrease in cpp32 and cyclinB1 protein levels and induction of poly (ADP-ribose) polymerase (PARP) cleavage following infection of MDA-MB-231 cells with Adp16. These results suggest that gene therapy using Adp16 may be a promising treatment option for human cancers containing alterations in p16 expression.  相似文献   

5.
Progression through the eukaryotic cell cycle is driven by the activity of cyclin-dependent kinases. The cyclin D-dependent kinase Cdk4 promotes progression through the G(1) phase of the cell cycle and is deregulated in many human tumors. The tumor suppressor protein p16(INK4A) (p16) forms a complex with Cdk4 and inhibits kinase activity. Here we report that p16 is phosphorylated, and the phosphorylated form of p16 is preferentially associated with Cdk4 in normal human fibroblasts. We mapped phosphorylation sites on exogenously overexpressed p16 to serines 7, 8, 140, and 152 and found that endogenous p16 associated with Cdk4 is phosphorylated at serine 152. All mapped phosphorylation sites lie outside of the conserved kinase-binding domain of p16 but in regions of the protein affected by mutations in familial and sporadic cancer. Our results suggest a novel regulation of p16 activity.  相似文献   

6.
黑素瘤是人类恶性皮肤肿瘤之一,对药物治疗不敏感且死亡率高.近年来随着分子生物学的发展,人们对黑素瘤的研究在基因水平取得了很大进步.p16INK4A作为一种多肿瘤抑制基因,与黑素瘤的发生、发展有关.P16 INK4A在黑素瘤中的失活形式主要是缺失、突变和甲基化,进一步明确p16INK4A基因的失活机制及其与黑素瘤的相关性,可能为黑素瘤的临床诊断、治疗和判断预后等方面提供一种新路径.  相似文献   

7.
Epstein-Barr virus (EBV) infection is associated with the development of specific types of lymphoma and some epithelial cancers. EBV infection of resting B-lymphocytes in vitro drives them to proliferate as lymphoblastoid cell lines (LCLs) and serves as a model for studying EBV lymphomagenesis. EBV nuclear antigen 3C (EBNA3C) is one of the genes required for LCL growth and previous work has suggested that suppression of the CDKN2A encoded tumor suppressor p16INK4A and possibly p14ARF is central to EBNA3C’s role in this growth transformation. To directly assess whether loss of p16 and/or p14 was sufficient to explain EBNA3C growth effects, we used CRISPR/Cas9 to disrupt specific CDKN2A exons in EBV transformed LCLs. Disruption of p16 specific exon 1α and the p16/p14 shared exon 2 were each sufficient to restore growth in the absence of EBNA3C. Using EBNA3C conditional LCLs knocked out for either exon 1α or 2, we identified EBNA3C induced and repressed genes. By trans-complementing with EBNA3C mutants, we determined specific genes that require EBNA3C interaction with RBPJ or CtBP for their regulation. Unexpectedly, interaction with the CtBP repressor was required not only for repression, but also for EBNA3C induction of many host genes. Contrary to previously proposed models, we found that EBNA3C does not recruit CtBP to the promoters of these genes. Instead, our results suggest that CtBP is bound to these promoters in the absence of EBNA3C and that EBNA3C interaction with CtBP interferes with the repressive function of CtBP, leading to EBNA3C mediated upregulation.  相似文献   

8.
Within the tumor suppressor protein INK4 (inhibitor of cyclin-dependent kinase 4) family, p15INK4B is the smallest and the only one whose structure has not been determined previously, probably due to the protein's conformational flexibility and instability. In this work, multidimensional NMR studies were performed on this protein. The first tertiary structure was built by comparative modeling with p16INK4A as the template, followed by restrained energy minimization with NMR constraints (NOE and H-bonds). For this purpose, the solution structure of pl6INK4A, whose quality was also limited by similar problems, was refined with additional NMR experiments conducted on an 800 MHz spectrometer and by structure-based iterative NOE assignments. The nonhelical regions showed major improvement with root-mean-square deviation (RMSD) improved from 1.23 to 0.68 A for backbone heavy atoms. The completion of p15INK4B coupled with refinement of p16INK4A made it possible to compare the structures of the four INK4 members in depth, and to compare the structures of p16INK4A in the free form and in the p16INK4A-CDK6 complex. This is an important step toward a comprehensive understanding of the precise functional roles of each INK4 member.  相似文献   

9.
10.
p16INK4a基因的功能及其调控   总被引:4,自引:0,他引:4  
p16INK4a蛋白能抑制CDK4和CDK6的活性,使pRb处于非磷酸化或低磷酸化状态而能与转录因子E2Fs结合,从而抑制DNA 的合成,阻止细胞由G1期进入S期.p16INK4a的表达受Ets1和Ets2的正调控,受Bmi-1的负调控.p16INK4a基因缺失、突变、甲基化、RNA剪接加工错误可导致细胞周期失控和癌变.应用p16INK4a对某些肿瘤进行基因治疗的研究正在进行中.  相似文献   

11.
12.
13.
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs.  相似文献   

14.
15.
16.
17.
18.
Schmitt CA  Fridman JS  Yang M  Lee S  Baranov E  Hoffman RM  Lowe SW 《Cell》2002,109(3):335-346
p53 and INK4a/ARF mutations promote tumorigenesis and drug resistance, in part, by disabling apoptosis. We show that primary murine lymphomas also respond to chemotherapy by engaging a senescence program controlled by p53 and p16(INK4a). Hence, tumors with p53 or INK4a/ARF mutations-but not those lacking ARF alone-respond poorly to cyclophosphamide therapy in vivo. Moreover, tumors harboring a Bcl2-mediated apoptotic block undergo a drug-induced cytostasis involving the accumulation of p53, p16(INK4a), and senescence markers, and typically acquire p53 or INK4a mutations upon progression to a terminal stage. Finally, mice bearing tumors capable of drug-induced senescence have a much better prognosis following chemotherapy than those harboring tumors with senescence defects. Therefore, cellular senescence contributes to treatment outcome in vivo.  相似文献   

19.
20.
Loss of CDKN2A/p16INK4A in hematopoietic stem cells is associated with enhanced self-renewal capacity and might facilitate progression of damaged stem cells into pre-cancerous cells that give rise to leukemia. This is also reflected by the frequent loss of the INK4A locus in acute lymphoblastic T-cell leukemia. T-cell acute lymphoblastic leukemia cells designed to conditionally express p16INK4A arrest in the G0/G1 phase of the cell cycle and show increased sensitivity to glucocorticoid- and tumor necrosis factor receptor superfamily 6-induced apoptosis. To investigate the underlying molecular mechanism for increased death sensitivity, we interfered with specific steps of apoptosis signaling by expression of anti-apoptotic proteins. We found that alterations in cell death susceptibility resulted from changes in the composition of pro- and anti-apoptotic BCL2 proteins, i.e. repression of MCL1, BCL2, and PMAIP1/Noxa and the induction of pro-apoptotic BBC3/Puma. Interference with Puma induction by short hairpin RNA technology or retroviral expression of MCL1 or BCL2 significantly reduced both glucocorticoid- and FAS-induced cell death in p16INK4A-reconstituted leukemia cells. These results suggest that Puma, in concert with MCL1 and BCL2 repression, critically mediates p16INK4A-induced death sensitization and that in human T-cell leukemia the deletion of p16INK4A confers apoptosis resistance by shifting the balance of pro- and anti-apoptotic BCL2 proteins toward apoptosis protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号