首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maisch J  Nick P 《Plant physiology》2007,143(4):1695-1704
Polar transport of auxin has been identified as a central element of pattern formation. The polarity of auxin transport is linked to the cycling of pin-formed proteins, a process that is related to actomyosin-dependent vesicle traffic. To get insight into the role of actin for auxin transport, we used patterned cell division to monitor the polarity of auxin fluxes. We show that cell division in the tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line is partially synchronized and that this synchrony can be perturbed by inhibition of auxin transport by 1-N-naphthylphthalamic acid. To address the role of actin in this synchrony, we induced a bundled configuration of actin by overexpressing mouse talin. The bundling of actin impairs the synchrony of cell division and increases the sensitivity to 1-N-naphthylphthalamic acid. Addition of the polarly transported auxins indole-3-acetic acid and 1-naphthyl acetic acid (but not 2,4-dichlorophenoxyacetic acid) restored both the normal organization of actin and the synchrony of cell division. This study suggests that auxin controls its own transport by changing the state of actin filaments.  相似文献   

2.
The directional transport of the plant hormone auxin has been identified as central element of axis formation and patterning in plants. This directionality of transport depends on gradients, across the cell, of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. The organization of actin, in turn, has been shown to be under control of auxin. By overexpression of the actin-binding protein talin, we have generated transgenic rice (Oryza sativa) lines, where actin filaments are bundled to variable extent and, in consequence, display a reduced dynamics. We show that this bundling of actin filaments correlates with impaired gravitropism and reduced longitudinal transport of auxin. We can restore a normal actin configuration by addition of exogenous auxins and restore gravitropism as well as polar auxin transport. This rescue is mediated by indole-3-acetic acid and 1-naphthyl acetic acid but not by 2,4-dichlorophenoxyacetic acid. We interpret these findings in the context of a self-referring regulatory circuit between polar auxin transport and actin organization. This circuit might contribute to the self-amplification of auxin transport that is a central element in current models of auxin-dependent patterning.In addition to its role as central regulator of growth, auxin is involved in pattern formation (Berleth and Sachs, 2001). Auxin-dependent patterning is linked to a directional flow of auxin, a cell-to-cell transport described by a modified chemiosmotic model (Lomax et al., 1995). The self-amplification of cell polarity by a polar auxin flow has been linked with directional intracellular traffic. Positive feedback of auxin on this traffic in combination with mutual competition of neighboring cells for free auxin are central for pattern formation (Merks et al., 2007). This so-called auxin canalization model has been originally deduced from an analysis of vascular bundles in regenerating stems (Sachs, 1969) but was successfully applied to venation in developing leaves (Sachs, 2000) and the patterning of leaf primordia (Reinhard et al., 2000). Thus, patterning would ultimately depend on the directionality of auxin transport.In the meantime, several plant-specific pin-formed (PIN) proteins have been identified as candidates for auxin-efflux carriers (for review, see Chen and Masson, 2006), and despite a long debate on the actual function of these proteins, the most recent results show that they are in fact rate-limiting for auxin efflux (Petrášek et al., 2006). PIN proteins undergo constitutive recycling between plasma membranes and endosomal compartments (Geldner et al., 2001; Paciorek et al., 2005). This recycling seems to be under control of small GTPases, the ADP-ribosylation factors (ARFs), and their associated guanine nucleotide exchange factors (Geldner et al., 2003). Mutation of one of these guanine nucleotide exchange factors is responsible for the phenotype of the Arabidopsis (Arabidopsis thaliana) mutant gnom causing a mislocalization of PIN1 that becomes trapped in intracellular compartments. This cellular mutant phenotype can be phenocopied by treatment of the wild type with brefeldin A, a fungal toxin that selectively blocks ARF-guanine nucleotide exchange factors (Geldner et al., 2001). This suggests that ARF-dependent vesicle trafficking is involved in the polar distribution of PIN proteins and, thus, in cell polarity.The internalization of PIN1 caused by brefeldin A is arrested by the actin inhibitor cytochalasin D (Geldner et al., 2001). Conversely, PIN3 is rapidly internalized upon treatment with cytochalasin (Friml et al., 2002). Moreover, the potent actin inhibitor latrunculin B (LatB) impaired the polar localization of PIN1 in protophloem cells, and with even higher sensitivity, of the auxin-efflux carrier AUX1 (Kleine-Vehn et al., 2006), and inhibition of myosin function with butane-2,3 monoxime inhibited basipetal auxin transport in flower stalks of Arabidopsis (Holweg, 2007). These findings suggest that actin participates in the cycling of some of the PIN proteins.The relation between actin and auxin seems to be bidirectional but complex; as early as 1937, Sweeney and Thimann (1937) demonstrated that auxin stimulates cytoplasmic streaming in oat (Avena sativa) coleoptiles. However, when streaming was inhibited by cytochalasin B, this delayed the onset of auxin transport but left the rate of auxin transport unaltered (Cande et al., 1973). The stimulation of coleoptile growth by auxin is accompanied by a debundling of actin bundles into finer strands (Waller et al., 2002; Holweg et al., 2004).Inhibition of auxin transport impaired the organization of actin in zygotes of the brown alga Fucus and inhibited signal-induced developmental polarity (Sun et al., 2004). Since the cycling of PIN proteins is regulated by auxin itself (Paciorek et al., 2005), there might be a feedback loop between actin and auxin. Consistent with this view, binding sites for 1-N-naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, have been found to cosediment with actin (Butler et al., 1998).However, models that link the polar localization of the PIN proteins to actin-dependent transport (Muday and Murphy, 2002; Blakeslee et al., 2005) are challenged by experiments where PIN proteins maintained their polar localization, although actin filaments had been eliminated (for instance, by cytochalasin D [Geldner et al., 2001], by low concentrations of LatB [Kleine-Vehn et al., 2006], or by the phytotropin NPA or artificial auxin 2,4-dichlorophenoxyacetic acid [2,4-D; Rahman et al., 2007]).On the other hand, a recent report (Dhonukshe et al., 2008) demonstrated that 2,3,5-triiodobenzoic acid (TIBA) and the phytotropin 2-(1-pyrenoyl) benzoic acid induced actin bundling not only in plants, but also in mammalian and yeast cells, i.e. in cells that are not to be expected to use auxin as signaling compound. This was interpreted as supportive evidence for a role of actin filaments in polar auxin transport. However, it was mentioned in the same work that NPA failed to cause actin bundling in nonplant cells, suggesting that its mode of action must be different. This is consistent with classical work demonstrating that different phytotropins act on different targets (for review, see Rubery, 1990). Summarizing, although actin seems to play a role for the polarity of auxin fluxes, this issue is, first, not simple and, second, far from being understood.The relationship between actin and auxin was studied in the context of patterned cell division using the tobacco (Nicotiana tabacum) cell line BY-2 (Maisch and Nick, 2007). In this cell line, cell division is partially synchronized within a cell file, leading to higher frequencies of files with even cell numbers compared with files with uneven cell numbers. This synchrony can be interrupted by low concentrations of NPA, an inhibitor of polar auxin flux. To address the role of actin in this synchrony, the actin-binding protein mouse talin was overexpressed in those cells, resulting in a bundled configuration of actin and a loss of synchrony similar to the effect of NPA (indicative for a reduced auxin transport). By addition of auxins that are transported in a polar fashion (but not auxin per se), both the normal organization of actin (with fine strands) and the synchrony of cell division could be restored. This demonstrated that debundled actin strands are necessary and sufficient for the synchrony of cell division. However, although being indicative for a functional auxin transport, this synchrony is not a direct measure of auxin transport.To measure auxin transport directly, it would be necessary to administer radioactively labeled auxin to one pole of the file and to quantify the radioactivity recovered in the opposite pole of the file. This is not possible in a tobacco cell culture that has to be cultivated as suspension in a liquid medium. We therefore have returned to the classical Graminean coleoptile system (for a classical review, see Goldsmith, 1977), where auxin has been discovered originally by its polar transport and where auxin transport can be easily measured by following the distribution of radioactively labeled indole-3-acetic acid (IAA) fed to the coleoptile apex. We generated transgenic rice (Oryza sativa) lines expressing the actin-binding protein talin to variable levels. In those lines, as a consequence of talin overexpression, actin filaments were bundled to variable extent. The bundling of actin filaments was accompanied by a reduced polar transport of auxin. We could restore a debundled configuration of actin by addition of exogenous auxin, and by this treatment we were able to restore auxin transport. This rescue was mediated by transportable auxin species, but not by the artificial auxin 2,4-D that lacks polar transport. Using this approach, we can now probe the causal relationship between actin configuration and polar auxin transport directly.  相似文献   

3.
Auxin, actin and growth of the Arabidopsis thaliana primary root   总被引:2,自引:0,他引:2  
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects on cell division, elongation and actin organization. Indole acetic acid (IAA), 1-naphthalene acetic acid (NAA) and tri-iodobenzoic acid (TIBA) inhibit root growth primarily through reducing the length of the growth zone rather than the maximal rate of elemental elongation and they do not reduce cell production rate. These three compounds have little effect on the extent of filamentous actin, as imaged in living cells or by chemical fixation and immuno-cytochemistry, but tend to increase actin bundling. In contrast, 2,4-dichlorophenoxy-acetic acid (2,4-D) and naphthylphthalamic acid (NPA) inhibit root growth primarily by reducing cell production rate. These compounds remove actin and slow down cytoplasmic streaming, but do not lead to mislocalization of the auxin-efflux proteins, PIN1 or PIN2. The effects of 2,4-D and NPA were mimicked by the actin inhibitor, latrunculin B. The effects of these compounds on actin were also elicited by a 2 h treatment at higher concentration but were not seen in two mutants, eir1-1 and aux1-7, with deficient auxin transport. Our results show that IAA regulates the size of the root elongation zone whereas 2,4-D affects cell production and actin-dependent processes; and, further, that elemental elongation and localization of PINs are appreciably independent of actin.  相似文献   

4.
5.
Polar transport of auxin has been identified as a central element of pattern formation. To address the underlying cellular mechanisms, we use the tobacco cell line (Nicotiana tabacum L. cv. Bright Yellow 2; BY-2) as model. We showed previously that cell divisions within a cell file are synchronized by polar auxin flow, linked to the organization of actin filaments (AF) which, in turn, is modified via actin-binding proteins (ABPs). From a preparatory study for disturbed division synchrony in cell lines overexpressing different ABPs, we identified the actin depolymerizing factor 2 (ADF2). A cell line overexpressing GFP-NtADF2 was specifically affected in division synchrony. The cell division pattern could be rescued by addition of Phosphatidylinositol 4,5-bisphosphate (PIP2) or by phalloidin. These observations allow to draw first conclusions on the pathway linking auxin signalling via actin reorganization to synchronized cell division placing the regulation of cortical actin turnover by ADF2 into the focus.  相似文献   

6.
Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.  相似文献   

7.
The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.  相似文献   

8.
As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport.  相似文献   

9.
Polar auxin transport (PAT) plays a critical role in the regulation of plant growth and development. Auxin influx carrier AUX1 is predominantly localized to the upper side of specific root cells in Arabidopsis. Overexpression of OsAGAP, an ARF-GTPase activating protein in rice, could induce the accumulation of AUX1. But the mechanism is poorly known. Here we reported that over-expression of ARF-GAP could reduce the thickness and bundling of microfilament (MF) which possibly could greatly interfere with the endocytosis of AUX1 early endosome; but not the exocytosis of AUX1 recycling endosome. Therefore, AFR-GAP over-expression suppressed-MF bundling is likely involved in regulating endocytosis of Auxin influx carrier AUX1 and in mediating auxin dependent plant development.      相似文献   

10.

Background

Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive.

Methodology/Principal Findings

Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations.

Conclusions/Significance

The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.  相似文献   

11.
A role for actin-driven secretion in auxin-induced growth   总被引:6,自引:0,他引:6  
Waller F  Riemann M  Nick P 《Protoplasma》2002,219(1-2):72-81
In epidermal cells of Zea mays coleoptiles, actin microfilaments are organized in fine strands during cell elongation, but are bundled in response to signals that inhibit growth. This bundling response is accompanied by an increased membrane association of extracted actin. Brefeldin A, an inhibitor of vesicle secretion, increases the membrane association of actin, causes a bundling of cortical actin microfilaments, and reduces the sensitivity of cell elongation to auxin. A model is proposed where auxin controls the dynamics of an actin subpopulation that guides vesicles loaded with components of the auxin-signaling machinery towards the cell poles.  相似文献   

12.
13.
Do phytotropins inhibit auxin efflux by impairing vesicle traffic?   总被引:12,自引:0,他引:12  
Phytotropins such as 1-N-naphthylphthalamic acid (NPA) strongly inhibit auxin efflux, but the mechanism of this inhibition remains unknown. Auxin efflux is also strongly decreased by the vesicle trafficking inhibitor brefeldin A (BFA). Using suspension-cultured interphase cells of the BY-2 tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line, we compared the effects of NPA and BFA on auxin accumulation and on the arrangement of the cytoskeleton and endoplasmic reticulum (ER). The inhibition of auxin efflux (stimulation of net accumulation) by both NPA and BFA occurred rapidly with no measurable lag. NPA had no observable effect on the arrangement of microtubules, actin filaments, or ER. Thus, its inhibitory effect on auxin efflux was not mediated by perturbation of the cytoskeletal system and ER. BFA, however, caused substantial alterations to the arrangement of actin filaments and ER, including a characteristic accumulation of actin in the perinuclear cytoplasm. Even at saturating concentrations, NPA inhibited net auxin efflux far more effectively than did BFA. Therefore, a proportion of the NPA-sensitive auxin efflux carriers may be protected from the action of BFA. Maximum inhibition of auxin efflux occurred at concentrations of NPA substantially below those previously reported to be necessary to perturb vesicle trafficking. We found no evidence to support recent suggestions that the action of auxin transport inhibitors is mediated by a general inhibition of vesicle-mediated protein traffic to the plasma membrane.  相似文献   

14.
Ligand Specificity of Bean Leaf Soluble Auxin-binding Protein   总被引:2,自引:2,他引:0       下载免费PDF全文
The soluble bean leaf auxin-binding protein (ABP) has a high affinity for a range of auxins including indole-3-acetic acid (IAA), α-napthaleneacetic acid, phenylacetic acid, 2,4,5-trichlorophenoxyacetic acid, and structurally related auxins. A large number of nonauxin compounds that are nevertheless structurally related to auxins do not displace IAA from bean ABP. Bean ABP has a high affinity for auxin transport inhibitors and antiauxins. The specificity of pea ABP for representative auxins is similar to that found for bean ABP. The bean ABP auxin binding site is similar to the corn endoplasmic reticulum auxin-binding sites in specificity for auxins and sensitivity to thiol reagents and azide. Qualitative similarities between the ligand specificity of bean ABP and the specificity of auxin-induced bean leaf hyponasty provide further evidence, albeit circumstantial, that ABP (ribulose 1,5-bisphosphate carboxylase) can bind auxins in vivo. The high incidence of ABP in bean leaves and the high affinity of this protein for auxins and auxin transport inhibitors suggest possible functions for ABP in auxin transport and/or auxin sequestration.  相似文献   

15.
Plant patterns have to integrate environmental cues and to cope with a high level of noise in the sensory outputs of individual cells. In the first part of this review, we demonstrate that local self-amplification linked to lateral inhibition can meet this requirement. In the second part, we describe the search for candidates for such self-amplification loops in the context of auxin-dependent cell growth using Graminean coleoptiles as a model. Auxin-dependent reorganization of actin microfilaments interfered with the auxin sensitivity of growth. Auxin might control the intracellular transport of factors important for auxin sensing via the actomyosin system. By means of a rice mutant with elevated auxin responsiveness, we identified an auxin response factor (OSARF1), whose expression is upregulated by auxin as a second candidate for a self-amplification loop. We studied the cross-talk between auxin signalling and environmental cues in the rice mutant hebiba, where the photoinhibition of growth is impaired. We found that jasmonate plays a central role in this cross-talk correlated to a downregulation of auxin responsiveness. To obtain an insight into auxin-dependent coordination, we analyzed a tobacco cell line with axial cell divisions. By a combination of modelling and physiological manipulation, we could demonstrate that auxin synchronizes the divisions of adjacent cells on the background of strong heterogeneity of individual cells. We conclude that self-amplification of auxin signalling coupled to mutual competition for available auxin provides a versatile tool to fulfill the special requirements posed by patterning in plants.  相似文献   

16.
17.
M. Jacobs  R. Hertel 《Planta》1978,142(1):1-10
An auxin binding sive, with characteristics different from the previously described auxin binding sites I and II in maize coleoptiles, is reported in homogenates of zucchini (Cucurbita pepo L. cv. Black Beauty) hypocotyls. Evidence from differential centrifugation and sucrose and metrizamide density gradients indicates that the site is localized on the plasma membrane. The site has a KD of 1–2×10–6 M for indole acetic acid and has a pH optimum of 5.0. Binding specificity measured with several auxins, weak auxins, and anti-auxins generally parallels the activities of the same compounds as inhibitors of auxin transport. 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid (2,3,5-TIBA), both auxin transport inhibitors in vivo, increase specific auxin binding to this site. 3,4,5-TIBA, which can partially reverse 2,3,5-TIBA's transport inhibition when the two substances are added together in vivo, partially reverses 2,3,5-TIBA's increase in specific auxin binding to the plasma membrane site when added with 2,3,5-TIBA in vitro. Preliminary investigations indicate that a similar plasma membrane site exists in maize (Zea mays L.) coleoptiles. It is suggested that different conformations of this site may function during active auxin transport.Abbreviations IAA indole-3-acetic acid - NPA 1-N-naphthylphthalamie acid - 2,3,5-TIBA 2,3,5-triiodobenzoic acid - 3,4,5-TIBA 3,4,5-triiodobenzoic acid - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DTE dithioerythritol - MOPS N-morpholino-3-propansulfonic acid - CCO cytochrome c oxidase - CCR NADH: cytochrome c reductase - glu I glucan synthetase I - ER endoplasmic reticulum  相似文献   

18.
The auxin influx carrier is essential for correct leaf positioning   总被引:8,自引:0,他引:8  
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.  相似文献   

19.
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4°C inhibited root growth and gravity response by ∼50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers.  相似文献   

20.
Artificially induced parthenocarpic fruits of apples, pears and tomatoes, as well as seeded fruits treated with 2,3,5-triiodobenzoic acid, frequently show symptoms of Ca deficiency and a low Ca content. It was concluded that auxins, probably produced by the seeds, play a significant role in Ca translocation into fruits. Exogenous indoleacetic acid but not 4-chlorophenoxyacetic acid applications could replace the effect of seeds in this respect. Auxin transport, rather than auxin accumulation, seems to be necessary for Ca transport, as can be concluded from the effect of auxin transport inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号