共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Sivakumar Pattathil Utku Avci David Baldwin Alton G. Swennes Janelle A. McGill Zo? Popper Tracey Bootten Anathea Albert Ruth H. Davis Chakravarthy Chennareddy Ruihua Dong Beth O'Shea Ray Rossi Christine Leoff Glenn Freshour Rajesh Narra Malcolm O'Neil William S. York Michael G. Hahn 《Plant physiology》2010,153(2):514-525
A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein- and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose- and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.Cell walls play important roles in the structure, physiology, growth, and development of plants (Carpita and Gibeaut, 1993). Plant cell wall materials are also important sources of human and animal nutrition, natural textile fibers, paper and wood products, and raw materials for biofuel production (Somerville, 2007). Many genes thought to be responsible for plant wall biosynthesis and modification have been identified (Burton et al., 2005; Lerouxel et al., 2006; Mohnen et al., 2008), and 15% of the Arabidopsis (Arabidopsis thaliana) genome is likely devoted to these functions (Carpita et al., 2001). However, phenotypic analysis in plants carrying cell wall-related mutations has proven particularly difficult. First, cell wall-related genes are often expressed differentially and at low levels between cells of different tissues (Sarria et al., 2001). Also, plants have compensatory mechanisms to maintain wall function in the absence of a particular gene (Somerville et al., 2004). Thus, novel tools and approaches are needed to characterize wall structures and the genes responsible for their synthesis and modification.Monoclonal antibodies (mAbs) developed against cell wall polymers have emerged as an important tool for the study of plant cell wall structure and function (Knox, 2008). Previous studies have utilized mAbs that bind epitopes present on rhamnogalacturonan I (RG-I; Freshour et al., 1996; Jones et al., 1997; Willats et al., 1998; McCartney et al., 2000; Clausen et al., 2004; Altaner et al., 2007), homogalacturonan (Willats et al., 2001; Clausen et al., 2003), xylogalacturonan (Willats et al., 2004), xylans and arabinoxylans (McCartney et al., 2005), xyloglucan (Freshour et al., 1996, 2003; Marcus et al., 2008), arabinogalactan(protein) (Pennell et al., 1991; Puhlmann et al., 1994; Dolan et al., 1995; Smallwood et al., 1996), and extensins (Smallwood et al., 1995) to localize these epitopes in plant cells and tissues. In addition, mAbs have been used to characterize plants carrying mutations in genes thought to be associated with cell wall biosynthesis and metabolism (Orfila et al., 2001; Seifert, 2004; Persson et al., 2007; Cavalier et al., 2008; Zabotina et al., 2008). Despite their utility, the available set of mAbs against carbohydrate structures is relatively small given the structural complexity of wall polymers (Ridley et al., 2001; O''Neill and York, 2003), and knowledge of their epitope specificity is limited. Thus, additional mAbs specific to diverse epitope structures and methods for rapid epitope characterization are needed (Somerville et al., 2004).Here, we report the generation of 130 new mAbs that bind to diverse epitopes present on a broad spectrum of plant cell wall glycans. In addition, approximately 50 previously reported or generated mAbs were included in the ELISA-based screens used to group the antibodies according to their binding patterns against a diverse panel of 54 polysaccharides. The resulting ELISA data were analyzed by hierarchical clustering to illustrate the relationships between the available mAbs. Nineteen groups of mAbs were identified from the clustering analysis. Some initial information regarding possible epitopes recognized by some of these antibodies could be inferred from the clustering analysis. 相似文献
6.
7.
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1–67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I–IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1–3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development. 相似文献
8.
Allan M. Showalter Brian Keppler Jens Lichtenberg Dazhang Gu Lonnie R. Welch 《Plant physiology》2010,153(2):485-513
Hydroxyproline-rich glycoproteins (HRGPs) are a superfamily of plant cell wall proteins that function in diverse aspects of plant growth and development. This superfamily consists of three members: hyperglycosylated arabinogalactan proteins (AGPs), moderately glycosylated extensins (EXTs), and lightly glycosylated proline-rich proteins (PRPs). Hybrid and chimeric versions of HRGP molecules also exist. In order to “mine” genomic databases for HRGPs and to facilitate and guide research in the field, the BIO OHIO software program was developed that identifies and classifies AGPs, EXTs, PRPs, hybrid HRGPs, and chimeric HRGPs from proteins predicted from DNA sequence data. This bioinformatics program is based on searching for biased amino acid compositions and for particular protein motifs associated with known HRGPs. HRGPs identified by the program are subsequently analyzed to elucidate the following: (1) repeating amino acid sequences, (2) signal peptide and glycosylphosphatidylinositol lipid anchor addition sequences, (3) similar HRGPs via Basic Local Alignment Search Tool, (4) expression patterns of their genes, (5) other HRGPs, glycosyl transferase, prolyl 4-hydroxylase, and peroxidase genes coexpressed with their genes, and (6) gene structure and whether genetic mutants exist in their genes. The program was used to identify and classify 166 HRGPs from Arabidopsis (Arabidopsis thaliana) as follows: 85 AGPs (including classical AGPs, lysine-rich AGPs, arabinogalactan peptides, fasciclin-like AGPs, plastocyanin AGPs, and other chimeric AGPs), 59 EXTs (including SP5 EXTs, SP5/SP4 EXTs, SP4 EXTs, SP4/SP3 EXTs, a SP3 EXT, “short” EXTs, leucine-rich repeat-EXTs, proline-rich extensin-like receptor kinases, and other chimeric EXTs), 18 PRPs (including PRPs and chimeric PRPs), and AGP/EXT hybrid HRGPs.The genomics era has produced vast amounts of biological data that await examination. In order to “mine” such data effectively, a bioinformatics approach can be utilized to identify genes of interest, subject them to various in silico analyses, and extract relevant biological information on them from various public databases. Examination of such data produces novel insights with respect to the genes in question and can be used to facilitate and guide further research in the field. Such is the case here, where bioinformatics tools were developed to identify, classify, and analyze members of the Hyp-rich glycoprotein (HRGP) superfamily encoded by the Arabidopsis (Arabidopsis thaliana) genome.HRGPs are a superfamily of plant cell wall proteins that are subdivided into three families, arabinogalactan proteins (AGPs), extensins (EXTs), and Pro-rich proteins (PRPs), and extensively reviewed (Showalter, 1993; Kieliszewski and Lamport, 1994; Nothnagel, 1997; Cassab, 1998; José-Estanyol and Puigdomènech, 2000; Seifert and Roberts, 2007). However, it has become increasingly clear that the HRGP superfamily is perhaps better represented as a spectrum of molecules ranging from the highly glycosylated AGPs to the moderately glycosylated EXTs and finally to the lightly glycosylated PRPs. Moreover, hybrid HRGPs, composed of HRGP modules from different families, and chimeric HRGPs, composed of one or more HRGP modules within a non-HRGP protein, also can be considered part of the HRGP superfamily. Given that many HRGPs are composed of repetitive protein sequences, particularly the EXTs and PRPs, and many have low sequence similarity to one another, particularly the AGPs, BLAST searches typically identify only a few closely related family members and do not represent a particularly effective means to identify members of the HRGP superfamily in a comprehensive manner.Building upon the work of Schultz et al. (2002) that focused on the AGP family, a new bioinformatics software program, BIO OHIO, developed at Ohio University, makes it possible to search all 28,952 proteins encoded by the Arabidopsis genome and identify putative HRGP genes. Two distinct types of searches are possible with this program. First, the program can search for biased amino acid compositions in the genome-encoded protein sequences. For example, classical AGPs can be identified by their biased amino acid compositions of greater then 50% Pro (P), Ala (A), Ser (S), and Thr (T), as indicated by greater than 50% PAST. Similarly, arabinogalactan peptides (AG peptides) are identified by biased amino acid compositions of greater then 35% PAST, but the protein (i.e. peptide) must also be between 50 and 90 amino acids in length. Likewise, PRPs can be identified by a biased amino acid composition of greater then 45% PVKCYT. Second, the program can search for specific amino acid motifs that are commonly found in known HRGPs. For example, SP4 pentapeptide and SP3 tetrapeptide motifs are associated with EXTs, a fasciclin H1 motif is found in fasciclin-like AGPs (FLAs), and PPVX(K/T) (where X is any amino acid) and KKPCPP motifs are found in several known PRPs (Fowler et al., 1999). In addition to searching for HRGPs, the program can analyze proteins identified by a search. For example, the program checks for potential signal peptide sequences and glycosylphosphatidylinositol (GPI) plasma member anchor addition sequences, both of which are associated with HRGPs (Showalter, 1993, 2001; Youl et al., 1998; Sherrier et al., 1999; Svetek et al., 1999). Moreover, the program can identify repeated amino acid sequences within the sequence and has the ability to search for bias amino acid compositions within a sliding window of user-defined size, making it possible to identify HRGP domains within a protein sequence.Here, we report on the use of this bioinformatics program in identifying, classifying, and analyzing members of the HRGP superfamily (i.e. AGPs, EXTs, PRPs, hybrid HRGPs, and chimeric HRGPs) in the genetic model plant Arabidopsis. An overview of this bioinformatics approach is presented in Figure 1. In addition, public databases and programs were accessed and utilized to extract relevant biological information on these HRGPs in terms of their expression patterns, most similar sequences via BLAST analysis, available genetic mutants, and coexpressed HRGP, glycosyl transferase (GT), prolyl 4-hydroxylase (P4H), and peroxidase genes in Arabidopsis. This information provides new insight to the HRGP superfamily and can be used by researchers to facilitate and guide further research in the field. Moreover, the bioinformatics tools developed here can be readily applied to protein sequences from other species to analyze their HRGPs or, for that matter, any given protein family by altering the input parameters.Open in a separate windowFigure 1.Bioinformatics workflow diagram summarizing the identification, classification, and analysis of HRGPs (AGPs, EXTs, and PRPs) in Arabidopsis. Classical AGPs were defined as containing greater than 50% PAST coupled with the presence of AP, PA, SP, and TP repeats distributed throughout the protein, Lys-rich AGPs were a subgroup of classical AGPs that included a Lys-rich domain, and chimeric AGPs were defined as containing greater than 50% PAST coupled with the localized distribution of AP, PA, SP, and TP repeats. AG peptides were defined to be 50 to 90 amino acids in length and containing greater than 35% PAST coupled with the presence of AP, PA, SP, and TP repeats distributed throughout the peptide. FLAs were defined as having a fasciclin domain coupled with the localized distribution of AP, PA, SP, and TP repeats. Extensins were defined as containing two or more SP3 or SP4 repeats coupled with the distribution of such repeats throughout the protein; chimeric extensins were similarly identified but were distinguished from the extensins by the localized distribution of such repeats in the protein; and short extensins were defined to be less than 200 amino acids in length coupled with the extensin definition. PRPs were identified as containing greater than 45% PVKCYT or two or more KKPCPP or PVX(K/T) repeats coupled with the distribution of such repeats and/or PPV throughout the protein. Chimeric PRPs were similarly identified but were distinguished from PRPs by the localized distribution of such repeats in the protein. Hybrid HRGPs (i.e. AGP/EXT hybrids) were defined as containing two or more repeat units used to identify AGPs, extensins, or PRPs. The presence of a signal peptide was used to provide added support for the identification of an HRGP but was not used in an absolute fashion. Similarly, the presence of a GPI anchor addition sequence was used to provide added support for the identification of classical AGPs and AG peptides, which are known to contain such sequences. BLAST searches were also used to provide some support to our classification if the query sequence showed similarity to other members of an HRGP subfamily. Note that some AGPs, particularly chimeric AGPs, and PRPs were identified from an Arabidopsis database annotation search and that two chimeric extensins were identified from the primary literature as noted in the text. 相似文献
9.
There exist four members of family GT43 glycosyltransferases in the Arabidopsis (Arabidopsis thaliana) genome, and mutations of two of them, IRX9 and IRX14, have previously been shown to cause a defect in glucuronoxylan (GX) biosynthesis. However, it is currently unknown whether IRX9 and IRX14 perform the same biochemical function and whether the other two GT43 members are also involved in GX biosynthesis. In this report, we performed comprehensive genetic analysis of the functional roles of the four Arabidopsis GT43 members in GX biosynthesis. The I9H (IRX9 homolog) and I14H (IRX14 homolog) genes were shown to be specifically expressed in cells undergoing secondary wall thickening, and their encoded proteins were targeted to the Golgi, where GX is synthesized. Overexpression of I9H but not IRX14 or I14H rescued the GX defects conferred by the irx9 mutation, whereas overexpression of I14H but not IRX9 or I9H complemented the GX defects caused by the irx14 mutation. Double mutant analyses revealed that I9H functioned redundantly with IRX9 and that I14H was redundant with IRX14 in their functions. In addition, double mutations of IRX9 and IRX14 were shown to cause a loss of secondary wall thickening in fibers and a much more severe reduction in GX amount than their single mutants. Together, these results provide genetic evidence demonstrating that all four Arabidopsis GT43 members are involved in GX biosynthesis and suggest that they form two functionally nonredundant groups essential for the normal elongation of GX backbone.Secondary walls constitute the bulk of cellulosic biomass produced by vascular plants. Cellulosic biomass in the form of fibers and wood is an important raw material for a myriad of industrial uses, such as timber, pulping, papermaking, and textiles. Due to the dwindling of nonrenewable fossil fuels and the detrimental effects of burning fossil fuels on the global environment, there has been an urgent call to develop alternative renewable energy sources, and the lignocellulosic biomass from plants is considered to be an attractive renewable source for biofuel production (Somerville, 2006). However, lignocellulosic biomass is recalcitrant to the enzymatic conversion of cellulose into sugars, because cellulose is embedded in a complex mixture of polysaccharides and lignin polymers that block the accessibility of degrading enzymes. It has been shown that reduction of lignin and xylan by chemical or enzymatic treatment or by the transgenic approach reduces the recalcitrance of the lignocellulosic biomass to saccharification (Chen and Dixon, 2007; Himmel et al., 2007; Lee et al., 2009a). Therefore, a complete understanding of how individual components of lignocellulosic biomass are biosynthesized will potentially allow us to design novel strategies for genetic modification of cell wall composition and, hence, reduction in biomass recalcitrance to biofuel production.Xylan is the main hemicellulose that cross-links with cellulose in the secondary walls of dicot plants (Carpita and McCann, 2000). It is made of a linear backbone of β-(1,4)-linked xylosyl residues, about 10% of which are attached with side chains of single residues of glucuronic acid (GlcA) and/or 4-O-methylglucuronic acid (MeGlcA) via α-(1,2)-linkages. The backbone xylosyl residues may also be substituted with the arabinosyl group and acetylated. Based on the nature of the side chains, xylan is generally grouped as (methyl)glucuronoxylan (GX), which is the main hemicellulose in dicots, and arabinoxylan and glucuronoarabinoxylan, which are the most abundant hemicelluloses in grass cell walls (Ebringerová and Heinze, 2000). In addition to the xylosyl backbone, the reducing end of xylan from birch (Betula verrucosa), spruce (Picea abies), Arabidopsis (Arabidopsis thaliana), and poplar (Populus alba × Populus tremula) contains a unique tetrasaccharide sequence β-d-Xylp-(1→3)-α-l-Rhap-(1→2)-α-d-GalpA-(1→4)-d-Xylp (Shimizu et al., 1976; Johansson and Samuelson, 1977; Andersson et al., 1983; Peña et al., 2007; Lee et al., 2009a).The biosynthesis of xylan requires multiple glycosyltransferases and other modifying enzymes. Early biochemical studies revealed the activities of xylosyltransferases, glucuronosyltransferases, arabinosyltransferases, methyltransferases, and acetyltransferases that are likely involved in the biosynthesis of xylan (Baydoun et al., 1983, 1989; Kuroyama and Tsumuraya, 2001; Gregory et al., 2002; Porchia et al., 2002; Urahara et al., 2004; Zeng et al., 2008). However, none of the genes corresponding to these xylan biosynthetic enzymes have been identified. Recent molecular and genetic studies in Arabidopsis and poplar have led to the identification of a number of glycosyltransferases that are essential for GX biosynthesis. Among them, several members of the families GT47 and GT8 from Arabidopsis (FRA8, F8H, IRX8, and PARVUS) and poplar (GT47C, GT8D, and GT8E/8F) are implicated in the biosynthesis of the GX reducing end sequence (Aspeborg et al., 2005; Brown et al., 2005, 2007; Zhong et al., 2005; Zhou et al., 2006, 2007; Lee et al., 2007b, 2009b, 2009c; Peña et al., 2007; Persson et al., 2007). These glycosyltransferase genes are specifically expressed in vessels and fibers, and their encoded proteins are targeted to Golgi, where GX is synthesized, except for PARVUS and GT8E/8F, which are predominantly located in the endoplasmic reticulum (Lee et al., 2007b, 2009c). Mutations of the Arabidopsis FRA8, IRX8, and PARVUS genes all led to a near loss of the reducing end tetrasaccharide sequence and a reduction in GX amount (Brown et al., 2007; Lee et al., 2007b; Peña et al., 2007), indicating their essential roles in the biosynthesis of the GX reducing end sequence, although their exact enzymatic activities are still unknown.The genetic studies have also identified roles of two members of family GT43 glycosyltransferases, IRX9 and IRX14, from Arabidopsis and GT43B from poplar in the biosynthesis of the GX xylosyl backbone (Brown et al., 2007; Peña et al., 2007; Zhou et al., 2007). The expression of IRX9 has been shown to be associated with cells undergoing secondary wall biosynthesis, and its encoded protein is targeted to the Golgi. Mutation of the IRX9 gene causes a drastic reduction in xylan xylosyltransferase activity (Brown et al., 2007; Lee et al., 2007a) and concomitantly a substantial decrease in the GX chain length and GX amount (Peña et al., 2007). Mutation of IRX14 was shown to result in a reduction in the GX level and the xylosyltransferase activity (Brown et al., 2007). In addition, two functionally redundant glycosyltransferases, IRX10 and IRX10-like, which belong to family GT47, were also demonstrated to be required for the normal GX level and xylan xylosyltransferase activity, suggesting their involvement in the biosynthesis of the GX xylosyl backbone (Brown et al., 2009; Wu et al., 2009).In this report, we performed comprehensive molecular and genetic studies of the roles of all members of the Arabidopsis family GT43 glycosyltransferases in GX biosynthesis. We show that, like IRX9, the other three GT43 members, I9H (IRX9 homolog), IRX14, and I14H (IRX14 homolog), are expressed in secondary wall-containing cells and that their encoded proteins are targeted to the Golgi. We have found that the GX defects in the irx9 mutant can be rescued by overexpression of I9H but not IRX14 and I14H. Similarly, overexpression of I14H but not IRX9 and I9H is able to complement the GX defects caused by the irx14 mutation. Furthermore, genetic analysis of an array of double mutants revealed redundant and nonredundant roles of GT43 members in GX biosynthesis. Our findings demonstrate that the Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the normal elongation of GX backbone. 相似文献
10.
11.
Structure of Plant Cell Walls : XXVI. The Walls of Suspension-Cultured Sycamore Cells Contain a Family of Rhamnogalacturonan-I-Like Pectic Polysaccharides
下载免费PDF全文

Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ~4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells. 相似文献
12.
Roles of Cellulose and Xyloglucan in Determining the Mechanical Properties of Primary Plant Cell Walls 总被引:11,自引:0,他引:11
下载免费PDF全文

Sarah E.C. Whitney Michelle G.E. Gothard John T. Mitchell Michael J. Gidley 《Plant physiology》1999,121(2):657-664
The primary cell walls of growing and fleshy plant tissue mostly share a common set of molecular components, cellulose, xyloglucan (XyG), and pectin, that are required for both inherent strength and the ability to respond to cell expansion during growth. To probe molecular mechanisms underlying material properties, cell walls and analog composites from Acetobacter xylinus have been measured under small deformation and uniaxial extension conditions as a function of molecular composition. Small deformation oscillatory rheology shows a common frequency response for homogenized native cell walls, their sequential extraction residues, and bacterial cellulose alone. This behavior is characteristic of structuring via entanglement of cellulosic rods and is more important than cross-linking with XyG in determining shear moduli. Compared with cellulose alone, composites with XyG have lower stiffness and greater extensibility in uniaxial tension, despite being highly cross-linked at the molecular level. It is proposed that this is due to domains of cross-linked cellulose behaving as mechanical elements, whereas cellulose alone behaves as a mat of individual fibrils. The implication from this work is that XyG/cellulose networks provide a balance of extensibility and strength required by primary cell walls, which is not achievable with cellulose alone. 相似文献
13.
14.
The walls of barley (Hordeum vulgare var. Himalaya) aleurone cells are composed of two major polysaccharides, arabinoxylan (85%) and cellulose (8%). The cell wall preparations contain 6% protein, but this protein does not contain detectable amounts of hydroxyproline. The arabinoxylan has a linear 1,4-xylan backbone; 33% of the xylosyl residues are substituted at the 2 and/or 3 position with single arabinofuranosyl residues. The results of in vitro cellulose binding experiments support the hypothesis that noncovalent bonds between the arabinoxylan chains and cellulose fibers play a part in maintaining wall structure. It is suggested that bonding between the arabinoxylan chains themselves is also utilized in forming the walls. 相似文献
15.
The Structure of Plant Cell Walls: VI. A Survey of the Walls of Suspension-cultured Monocots
下载免费PDF全文

The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included. 相似文献
16.
植物环核苷酸门控通道(CNGC)基因家族的结构与功能 总被引:1,自引:0,他引:1
环核苷酸门控通道(CNGC)是近年来被确认的在动植物细胞中普遍存在的离子通道基因家族。文章就近年来植物中CNGC基因的种类、分子结构、作用机制及其在植物生长发育中的功能的研究进展作了概述。 相似文献
17.
18.
The GS-X Pump in Plant, Yeast, and Animal Cells: Structure, Function, and Gene Expression 总被引:9,自引:0,他引:9
This review addresses the recent molecular identification of several members of the glutathione S-conjugate (GS-X) pump family, a new class of ATP-binding cassette (ABC) transporters responsible for the elimination and/or sequestration of pharmacologically and agronomically important compounds in mammalian, yeast and plant cells. The molecular structure and function of GS-X pumps encoded by MRP, cMOAT, YCF1. and AtMRP genes, have been conserved throughout molecular evolution. The physiologic function of GS-X pumps is closely related with cellular detoxification, oxidative stress, inflammation, and cancer drug resistance. Coordinated expression of GS-X pump genes, e.g., MRP1 and YCF1, and -glutamylcystaine synthetase, a rate-limiting enzyme of cellular glutathione (GSH) biosynthesis, has been frequently observed. 相似文献
19.
Milena Silva Porto Morganna Pollynne Nóbrega Pinheiro Vandré Guevara Lyra Batista Roseane Cavalcanti dos Santos Péricles de Albuquerque Melo Filho Liziane Maria de Lima 《Molecular biotechnology》2014,56(1):38-49
With current advances in genomics, several technological processes have been generated, resulting in improvement in different segments of molecular research involving prokaryotic and eukaryotic systems. A widely used contribution is the identification of new genes and their functions, which has led to the elucidation of several issues concerning cell regulation and interactions. For this, increase in the knowledge generated from the identification of promoters becomes considerably relevant, especially considering that to generate new technological processes, such as genetically modified organisms, the availability of promoters that regulate the expression of new genes is still limited. Considering that this issue is essential for biotechnologists, this paper presents an updated review of promoters, from their structure to expression, and focuses on the knowledge already available in eukaryotic systems. Information on current promoters and methodologies available for studying their expression are also reported. 相似文献
20.
Observations on the Fine Structure of Plant Cell Walls III. The Sieve Tube Wall in Cucurbita 总被引:1,自引:0,他引:1
The sieve tube wall in Cucurbita was examined in ultra-thinsections of petioles treated in different ways for the removalof non-cellulosic wall components. The sections were stainedwith permanganate. The microfibrillar components of the wallare arranged in concentric lamellae. The earliest (outermost)part of the wall is similar to that of ordinary parenchyma inhaving its lamellae composed of thinly-distributed microfibrilsreadily separated from one another by certain treatments suchas pectinase extraction. In the characteristically-thickenedinner (nacreous) layer the microfibrils are very densely packedand the lamellae do not separate readily. The microfibrils inthis layer of the wall are very close to transverse and thecrossed fibrillar orientation is not easily discernible. 相似文献