首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The plant toxin ricin is transported to the Golgi and the endoplasmic reticulum before translocation to the cytosol where it inhibits protein synthesis. The toxin can therefore be used to investigate pathways leading to the Golgi apparatus. Except for the Rab9-mediated transport of mannose 6-phosphate receptors from endosomes to the trans-Golgi network (TGN), transport routes between endosomes and the Golgi apparatus are still poorly characterized. To investigate endosome to Golgi transport, we have used here a modified ricin molecule containing a tyrosine sulfation site and quantified incorporation of radioactive sulfate, a TGN modification. A tetracycline-inducible mutant Rab9S21N HeLa cell line was constructed and characterized to study whether Rab9 was involved in transport of ricin to the TGN and, if not, to further investigate the route used by ricin. Induced expression of Rab9S21N inhibited Golgi transport of mannose 6-phosphate receptors but did not affect the sulfation of ricin, suggesting that ricin is transported to the TGN via a Rab9-independent pathway. Moreover, because Rab11 is present in the endosomal recycling compartment and the TGN, studies of transient transfections with mutant Rab11 were performed. The results indicated that routing of ricin from endosomes to the TGN occurs by a Rab11-independent pathway. Finally, because clathrin has been implicated in early endosome to TGN transport, ricin transport was investigated in cells with inducible expression of antisense to clathrin heavy chain. Importantly, endosome to TGN transport (sulfation of endocytosed ricin) was unchanged when clathrin function was abolished. In conclusion, ricin is transported from endosomes to the Golgi apparatus by a Rab9-, Rab11-, and clathrin-independent pathway.  相似文献   

2.
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane.  相似文献   

3.
Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.  相似文献   

4.
A tripartite association of Rab11a with both Rab11‐FIP2 and MYO5B regulates recycling endosome trafficking. We sought to define the intermolecular interactions required between Rab11‐FIP2 and MYO5B. Using a random mutagenesis strategy, we identified point mutations at S229P or G233E in Rab11‐FIP2 that caused loss of interaction with MYO5B in yeast two‐hybrid assays as well as loss of interaction of Rab11‐FIP2(129‐356) with MYO5B tail when expressed in HeLa cells. Single mutations or the double S229P/G233E mutation failed to alter the association of full‐length Rab11‐FIP2 with MYO5B tail in HeLa cells. While EGFP‐Rab11‐FIP2 wild type colocalized with endogenous MYO5B staining in MDCK cells, EGFP‐Rab11‐FIP2(S229P/G233E) showed a significant decrease in localization with endogenous MYO5B. Analysis of Rab11a‐containing vesicle movement in live HeLa cells demonstrated that when the MYO5B/Rab11‐FIP2 association is perturbed by mutation or by Rab11‐FIP2 knockdown, vesicle movement is increased in both speed and track length, consistent with an impairment of MYO5B tethering at the cytoskeleton. These results support a critical role for the interaction of MYO5B with Rab11‐FIP2 in stabilizing the functional complex with Rab11a, which regulates dynamic movements of membrane recycling vesicles.   相似文献   

5.
Stimulated exocytic events provide a means for physiological communication and are a hallmark of the mast cell‐mediated allergic response. In mast cells these processes are triggered by antigen crosslinking of IgE bound to its high‐affinity receptor, Fc?RI, on the cell surface. Here we use the endosomal v‐SNARE VAMP8, and the lysosomal hydrolase β‐hexosaminidase (β‐Hex), each C‐terminally fused to super‐ecliptic pHluorin, to monitor stimulated exocytosis. Using these pHluorin‐tagged constructs, we monitor stimulated exocytosis by fluorimetry and visualize individual exocytic events with total internal reflection (TIRF) microscopy. Similar to constitutive recycling endosome (RE) trafficking, we find that stimulated RE exocytosis, monitored by VAMP8, is attenuated by expression of dominant negative (S25N) Rab11. Stimulated β‐Hex exocytosis is also reduced in the presence of S25N Rab11, suggesting that expression of this mutant broadly impacts exocytosis. Interestingly, pretreatment with inhibitors of actin polymerization, cytochalasin D or latrunculin A, substantially restores both RE and lysosome exocytosis in cells expressing S25N Rab11. Conversely, stabilizing F‐actin with jasplakinolide inhibits antigen‐stimulated exocytosis but is not additive with S25N Rab11‐mediated inhibition, suggesting that these reagents inhibit related processes. Together, our results suggest that Rab11 participates in the regulation necessary for depolymerization of the actin cytoskeleton during stimulated exocytosis in mast cells.   相似文献   

6.
In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R‐SNARE VAMP3 on the recycling endosome partnering with the surface Q‐SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3‐mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3‐mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5β1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.  相似文献   

8.
Membrane trafficking is well known to regulate receptor-mediated signaling processes, but less is known about whether signaling receptors conversely regulate the membrane trafficking machinery. We investigated this question by focusing on the beta-2 adrenergic receptor (B2AR), a G protein-coupled receptor whose cellular signaling activity is controlled by ligand-induced endocytosis followed by recycling. We used total internal reflection fluorescence microscopy (TIR-FM) and tagging with a pH-sensitive GFP variant to image discrete membrane trafficking events mediating B2AR endo- and exocytosis. Within several minutes after initiating rapid endocytosis of B2ARs by the adrenergic agonist isoproterenol, we observed bright “puffs” of locally increased surface fluorescence intensity representing discrete Rab4-dependent recycling events. These events reached a constant frequency in the continuous presence of isoproterenol, and agonist removal produced a rapid (observed within 1 min) and pronounced (≈twofold) increase in recycling event frequency. This regulation required receptor signaling via the cAMP-dependent protein kinase (PKA) and a specific PKA consensus site located in the carboxyl-terminal cytoplasmic tail of the B2AR itself. B2AR-mediated regulation was not restricted to this membrane cargo, however, as transferrin receptors packaged in the same population of recycling vesicles were similarly affected. In contrast, net recycling measured over a longer time interval (10 to 30 min) was not detectably regulated by B2AR signaling. These results identify rapid regulation of a specific recycling pathway by a signaling receptor cargo.  相似文献   

9.
10.
The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K+ conditions. In the present study, we addressed whether hERG internalization occurs under normal K+ conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K+-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K+ exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K+ medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels.  相似文献   

11.
12.
Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.Influenza A virus is a highly infectious respiratory pathogen, causing 3 to 5 million severe cases yearly while the recent H1N1 pandemic has spread to over 200 countries and resulted in over 15,000 WHO-confirmed deaths since its emergence in March 2009 (57). Influenza virus particles are enveloped structures that contain nine identified viral polypeptides. The lipid envelope is derived by budding from the apical plasma membrane and contains the viral integral membrane proteins hemagglutinin (HA) and neuraminidase (NA) as well as the M2 ion channel. Internally, virus particles contain a matrix protein (M1), small quantities of the NS2/NEP polypeptide, and eight genomic segments of negative-sense RNA that are separately encapsidated into ribonucleoprotein (RNP) particles by the viral nucleoprotein (NP) and tripartite polymerase complex (PB1, PB2, and PA). M1 is thought to form a link between the RNPs and the cytoplasmic tails of the viral membrane proteins though M2 may also play a role (39). The minimal viral protein requirements for budding are disputed; while initial studies suggested that M1 was the main driver of budding (21, 34), more recent work proposes that the glycoproteins HA and NA are responsible (8).Further complicating the analysis of influenza A virus budding is the observation that most strains of the virus form two distinct types of virions: spherical particles approximately 100 nm in diameter and much longer filamentous particles up to 30 μm in length (38). Of the viral proteins, M1 is the primary determinant of particle shape (3, 17) although other virus genes also play a role. It is also likely that host factors are involved in the process as cells with fully differentiated apical and basolateral membranes produce more filaments than nonpolarized cell types (42). While it is tempting to speculate that virus morphology and budding are regulated by the same cellular process, the fact that spherical budding occurs in the absence of an intact actin cytoskeleton while filament formation does not (42, 48) indicates some level of divergence in the mechanisms responsible for spherical and filamentous virion morphogenesis.The means by which viral and cellular membranes are separated are also unclear. Unlike many other enveloped viruses, including retroviruses (19, 36, 52) and herpes simplex virus (12), influenza A virus does not utilize the cellular endosomal sorting complex required for transport (ESCRT) pathway (5, 8). However, recent reports indicate that some viruses, including human cytomegalovirus (HCMV) (32), the hantavirus Andes virus (44), and respiratory syncytial virus (RSV) may employ a Rab11-mediated pathway during assembly and/or budding (4, 51). The Rab family of small GTPases is involved in targeting vesicle trafficking, mediating a wide range of downstream processes including endosomal trafficking and membrane fusion/fission events (reviewed in references 53 and 58). Rab11 is involved in trafficking proteins and vesicles between the trans-Golgi network (TGN), recycling endosome, and the plasma membrane (9, 49, 50) as well as playing a role in actin remodeling, cytokinesis, and abscission (27, 41, 55). Apical recycling endosome (ARE) trafficking is of particular interest in the context of viral infection as other negative-sense RNA viruses have been shown to assemble and/or traffic virion components through the ARE prior to final assembly and budding at the plasma membrane (4, 44, 51). Rab11 function is modulated and targeted through interactions with Rab11 family interacting proteins (Rab11-FIPs) that direct it to specific subcellular locations (23, 25, 26) by binding to actin or microtubule-based motor proteins (24, 26, 47). While Rab11-FIPs recognize both isoforms of Rab11 (a and b [Rab11a/b]) through a conserved amphipathic α-helical motif, they differ in their ability to bind either the GTP-bound form of Rab11 (FIP1, FIP3, FIP4, and Rip11) or both the GTP and GDP-bound forms (FIP2) (23, 30). FIP1 and FIP2 have been implicated in RSV budding (4, 51) while FIP4 is important for trafficking of HCMV components (32). FIP3 has not previously been linked with virus budding but plays an important role in both cell motility and cytokinesis, regulating actin dynamics and endosomal membrane trafficking (29, 55).In light of the normal cellular functions of Rab11 and its effectors and of their reported involvement in the budding of other viruses, we examined the role of this cellular pathway in influenza virus budding. We find that Rab11-FIP3 is essential for filamentous but not spherical virion formation while Rab11 is required for both forms of virus budding.  相似文献   

13.
14.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin–Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.  相似文献   

15.
Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.  相似文献   

16.
17.
The epithelial Na+ channel (ENaC) is an essential channel responsible for Na+ reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.  相似文献   

18.

Background

While it is accepted that viruses can enter epithelial cells by endocytosis, the lack of an established biological mechanism for the trafficking of infectious virions through vaginal epithelial cells and their release from the plasma membrane has contributed to ongoing controversy about whether endocytosis is a mere artifact of some cell culture systems and whether squamous vaginal epithelial cells are even relevant as it pertains to HIV-1 transmission.

Methodology/Principal Findings

In this study, we investigated the intracellular trafficking pathway that HIV-1 exploits to transcytose vaginal epithelial cells. The reduction of endosome tubulation by recycling endosome inhibitors blocked transcytosis of HIV-1 in a cell culture and transwell system. In addition, we demonstrate that although heat-inactivated virus was endocytosed as efficiently as native virus, heat-inactivated virus was trafficked exclusively to the lysosomal pathway for degradation following endocytosis. Lysosomal protease-specific inhibitors blocked the degradation of inactivated virions. Immunofluorescence analysis not only demonstrated that HIV-1 was inside the cells but the different colocalization pattern of native vs. heat inactivated virus with transferrin provided conclusive evidence that HIV-1 uses the recycling pathway to get across vaginal epithelial cells.

Conclusions/Significance

Altogether, our findings demonstrate the precise intracellular trafficking pathway utilized by HIV-1 in epithelial cells, confirms that HIV-1 transcytosis through vaginal epithelial cells is a biological phenomenon and brings to light the differential intracellular trafficking of native vs heat-inactivated HIV-1 which with further exploration could prove to provide valuable insights that could be used in the prevention of transcytosis/transmission of HIV-1 across the mucosal epithelia.  相似文献   

19.
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization but the mechanisms regulating its intracellular trafficking and/or recycling to the plasma membrane are poorly understood. Herein, we conducted a yeast-two-hybrid screen to identify proteins interacting with the carboxyl-terminal (C)-tail domain of the hIP and discovered a novel interaction with Rab11a. This interaction was confirmed by co-immunoprecipitations in mammalian HEK293 and was augmented by cicaprost stimulation. The hIP co-localized to Rab11-containing recycling endosomes in both HEK293 and endothelial EA.hy 926 cells in a time-dependent manner following cicaprost stimulation. Moreover, over-expression of Rab11a significantly increased recycling of the hIP, while the dominant negative Rab11S25N impaired that recycling. Conversely, while the hIP co-localized to Rab4-positive endosomes in response to cicaprost, ectopic expression of Rab4a did not substantially affect overall recycling nor did Rab4a directly interact with the hIP. The specific interaction between the hIP and Rab11a was dependent on a 22 amino acid (Val299–Gln320) sequence within its C-tail domain and was independent of isoprenylation of the hIP. This study elucidates a critical role for Rab11a in regulating trafficking of the hIP and has identified a novel Rab11 binding domain (RBD) within its C-tail domain that is both necessary and sufficient to mediate interaction with Rab11a.  相似文献   

20.
Macropinocytosis is a clathrin‐independent endocytic pathway implicated in fluid uptake, pathogen invasion and cell migration. During collective cell migration, macropinocytosis occurs primarily at membrane ruffles arising from the leading edges of migrating cells. We report here that N‐cadherin (Ncad) regulates the tempo of macropinocytosis and thereby influences wound‐induced collective cell migration. Using live‐cell and super‐resolution imaging techniques, we observed that Ncad formed clusters at the membrane ruffles and macropinosomes. De‐clustering of Ncad by an interfering antibody impaired the recruitment of Rab5‐an early endosomal marker‐to the macropinosomes. Moreover, we demonstrated that Ncad interacts with Rab5, and laser ablation of Ncad caused Rab5 to dissociate from the macropinosomes. Although Rab5 detached from macropinosomes upon the de‐clustering of Ncad, the recruitment of late endosomal marker Rab7 occurred earlier. Consequently, both centripetal trafficking of macropinosomes and collective migration were accelerated due to de‐clustering of Ncad. Thus, our results suggest that Ncad is involved in the maturation of macropinocytosis through Rab5 recruitment, linking macropinocytosis and cell migration through a novel function of Ncad.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号