首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary In eastern North America, the nematodeHowardula aoronymphium parasitizes four species of mushroom-breedingDrosophila:D. falleni andD. recens of the quinaria species group, andD. putrida andD. testacea of the testacea group. One strain ofH. aoronymphium, designated Mendon-87, was initially capable of infecting all four of these host species. After less than 3 years in laboratory culture usingD. falleni as the sole host, this strain had completely lost the ability to infectD. putrida. Two other nematode strains parasitizedD. falleni andD. putrida at equal rates. These results demonstrate the existence of genetic variation for host specificity within this nematode species. More importantly, they show that host specificity can evolve rapidly when only one host is available for parasitization. Ecological conditions are such that natural populations ofH. aoronymphium may comprise numerous host races, lineages incapable of parasitizing the full range of host species. However, I argue that such host races are probably ephemeral and thus unlikely to persist long enough to undergo speciation.  相似文献   

3.
4.
IgG levels and host specificity in hydatid cyst fluid   总被引:2,自引:0,他引:2  
  相似文献   

5.

Background

The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure – the syncytium – which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium.

Results

The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure.

Conclusion

This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-923) contains supplementary material, which is available to authorized users.  相似文献   

6.
Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.  相似文献   

7.
The discovery 45 years ago that many Pseudomonas syringae pathovars elicit the hypersensitive response in plant species other than their hosts fostered the use of these bacteria as experimental models. However, the basis for host specificity and the corresponding resistance of nonhosts remain unclear. Pseudomonas syringae is now known to inject into the host cytoplasm, via the type III secretion system, effector proteins that suppress basal innate immunity, but may be recognized by cognate resistance (R) proteins in a second level of defence. The identification and manipulation of complete repertoires of type III effectors have revealed the highly polymorphic nature of effector repertoires and their potential to limit the host range. However, the maintenance of compatible effector repertoires may be driven by adaptations to life in a given plant species involving many factors. Tools are now available to test several hypotheses for the nature and evolution of P. syringae host specificity and nonhost resistance.  相似文献   

8.
The heart circuitry of the medicinal leech (Hirudo medicinalis) is a highly stereotyped circuit in the adult, but selection of the heart tube (HT) as a definitive target by heart excitor (HE) motor neurons during embryogenesis involves redirection of axonal arbors. In the present study we have confirmed the specificity of mature innervation using a retrograde marker and have used a combination of tissue/organ coculture and in situ manipulations to test the ability of HT and body wall to support axon outgrowth compared to CNS associated tissue. We also examined the temporal limits of target influence and the specificity of its action. Embryonic and young juvenile HT and body wall, but not adult HT, support or stimulate marked axon outgrowth from CNS ganglia, including those that would not innervate these tissues in vivo. Outgrowth support/stimulation by young tissue is largely contact based with little or no overt selectivity. Thus, outgrowth-supporting cues are developmentally regulated in the periphery, decreasing in efficacy with age while adult CNS-derived tissues consistently provide effective substrates supporting extensive axon outgrowth and regrowth. The HE motor neuron was very discriminating in that it showed little axon extension onto the HT compared to that of other neurons generally. These studies support a role for bidirectional communication in target selection. We suggest a working hypothesis that the HE motor neuron may initially select HT in response to a hierarchy of outgrowth supporting cues that have very broad influence and subsequently responds to selective signals for slowing or stopping growth and terminating on the functionally appropriate target.  相似文献   

9.
The protective immune response that develops following infection with many tissue-dwelling intestinal nematode parasites is characterised by elevations in IL-4 and IL-13 and increased numbers of CD4+ T cells, granulocytes and macrophages. These cells accumulate at the site of infection and in many cases can mediate resistance to these large multicellular pathogens. Recent studies suggest novel potential mechanisms mediated by these immune cell populations through their differential activation and ability to stimulate production of novel effector molecules. These newly discovered protective mechanisms may provide novel strategies to develop immunotherapies and vaccines against this group of pathogens. In this review, we will examine recent studies elucidating mechanisms of host protection against three widely-used experimental murine models of tissue-dwelling intestinal nematode parasites: Heligmosomoides polygyrus, Trichuris muris and Trichinella spiralis.  相似文献   

10.
11.
Many Gram-negative pathogens use a type III secretion apparatus to deliver effector molecules into host cells to subvert cellular processes in favour of the pathogen. Enteropathogenic Escherichia coli (EPEC) uses such a system to deliver the Tir effector molecule into host cells. In this paper, we show that the gene upstream of tir , orf 19, encodes an additional type III secreted effector protein. Orf19 is delivered into host cells by a mechanism independent of endocytosis, but dependent on EspB. Orf19 is targeted to host mitochondria, where it appears to interfere with the ability to maintain membrane potential. Although the precise role of Orf19 remains to be elucidated, its interaction with mitochondria suggests a possible role in the subversion of key functions of these organelles, such as energy production or control of cell death. This is the first example of a type III secreted protein targeted to mitochondria; it is probable that homologues (present in EPEC and Shigella species) and other bacterial effectors will also target this organelle.  相似文献   

12.
13.
Selection of a specific microbial partner by the host is an all-important process. It guarantees the persistence of highly specific symbioses throughout host generations. The cuticle of the marine nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid. This Ca2+-dependent lectin mediates symbiont aggregation and attachment to the nematode. Here, we show that Stilbonema majum—a symbiotic nematode co-occurring with L. oneistus in shallow water sediment—is covered by bacteria phylogenetically distinct to those covering L. oneistus. Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode species. We expressed three recombinant Mermaid isoforms, which based on the structural predictions display the most different carbohydrate recognition domains (CRDs). We show that the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts. Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont detachment, whereas incubation in the other types does. This indicates that the presence of particular Mermaid isoforms on the nematode surface has a role in the attachment of specific symbionts. This is the first report of the functional role of sequence variability in a microbe-associated molecular patterns receptor in a beneficial association.  相似文献   

14.
SNAREs contribute to the specificity of membrane fusion   总被引:14,自引:0,他引:14  
Scales SJ  Chen YA  Yoo BY  Patel SM  Doung YC  Scheller RH 《Neuron》2000,26(2):457-464
Intracellular membrane fusion is mediated by the formation of a four-helix bundle comprised of SNARE proteins. Every cell expresses a large number of SNARE proteins that are localized to particular membrane compartments, suggesting that the fidelity of vesicle trafficking might in part be determined by specific SNARE pairing. However, the promiscuity of SNARE pairing in vitro suggests that the information for membrane compartment organization is not encoded in the inherent ability of SNAREs to form complexes. Here, we show that exocytosis of norepinephrine from PC12 cells is only inhibited or rescued by specific SNAREs. The data suggest that SNARE pairing does underlie vesicle trafficking fidelity, and that specific SNARE interactions with other proteins may facilitate the correct pairing.  相似文献   

15.
Sedentary plant‐parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL‐ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode‐induced syncytia. Loss‐of‐function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.  相似文献   

16.

Background

A small percentage of human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected macaques control virus replication without antiretroviral treatment. The major determinant of this control is host expression of certain major histocompatibility complex alleles. However, this association is incompletely penetrant, suggesting that additional loci modify the major histocompatibility complex's protective effect. Here, to identify candidate control-modifying loci, we sequence the genomes of 12 SIV-infected Mauritian cynomolgus macaques that experienced divergent viral load set points despite sharing the protective M1 major histocompatibility complex haplotype.

Results

Our genome-wide analysis of haplotype-level variation identifies seven candidate control-modifying loci on chromosomes 2, 3, 7, 8, 9, 10, and 14. The highest variant density marks the candidate on chromosome 7, which is the only control-modifying locus to comprise genes with known immunological function. Upon closer inspection, we found an allele for one of these genes, granzyme B, to be enriched in M1(+) controllers. Given its established role as a cytotoxic effector molecule that participates in CD8-mediated killing of virus-infected cells, we test the role of variation within gzmb in modifying SIV control by prospectively challenging M1(+) granzyme B-defined macaques.

Conclusions

Our study establishes a framework for using whole genome sequencing to identify haplotypes that may contribute to complex clinical phenotypes. Further investigation into the immunogenetics underlying spontaneous HIV control may contribute to the rational design of a vaccine that prevents acquired immune deficiency syndrome.
  相似文献   

17.
18.
Seven trials conducted over four years on sites naturally infested with the white potato cyst nematode established that potato clones bred for resistance to Globodera pallida allowed significantly less nematode multiplication than conventional cultivars under field conditions. Nematode multiplication was inversely related to initial infestation level. The nematicide, aldicarb, significantly reduced nematode multiplication. However, nematode multiplication on nematicide treated susceptible cultivars was greater than on untreated partially resistant clones, indicating that resistance may offer more effective control of G. pallida than chemical treatment. Integration of host plant resistance and nematicide treatment is discussed.  相似文献   

19.
The RNA genome of Borna disease virus (BDV) shows extraordinary stability in persistently infected cell cultures. We performed bottleneck experiments in which virus populations from single infected cells were allowed to spread through cultures of uninfected cells and in which RNase protection assays were used to identify virus variants with mutations in a 535-nucleotide fragment of the M-G open reading frames. In one of the cell cultures, the major virus species (designated 2/1) was a variant with two point mutations in the G open reading frame. When fresh cells were infected with a low dose of a virus stock prepared from 2/1-containing cells, only a minority of the resulting persistently infected cultures contained detectable levels of the variant, whereas the others all seemed to contain wild-type virus. The BDV variant 2/1 remained stable in the various persistently infected cell cultures, indicating that the cells were resistant to superinfection by wild-type virus. Indeed, cells persistently infected with prototype BDV He/80 were also found to resist superinfection with strain V and vice versa. Our screen for mutations in the viral M and G genes of different rat-derived BDV virus stocks revealed that only one of four stocks believed to contain He/80 harbored virus with the original sequence. Two stocks mainly contained a novel virus variant with about 3% sequence divergence, whereas the fourth stock contained a mixture of both viruses. When the mixture was inoculated into the brains of newborn mice, the novel variant was preferentially amplified. These results provide evidence that the BDV genome is mutating more frequently than estimated from its invariant appearance in persistently infected cell cultures and that resistance to superinfection might strongly select against novel variants.  相似文献   

20.
Summary Soybean (S, Glycine max (L.) Merr.) lines with relatively few cysts of soybean cyst nematode (CN, Heterodera glycines Ichinohe) populations are usually called CN-resistant. The phenotype of number of cysts per plant is of the CN-S (Cyst Nematode-Soybean) association and determined by the interactions of genes for avirulence-resistance. The acronym alins was proposed for these alleles for incompatibility, with xalin representing the interaction X of one microsymbiont malin with its host h-alin. These alins are dominant in the gene-for-gene model but may be mostly recessive with CN-S. Definitive genetic studies have been hindered by the heterogeneity of sexually reproducing CN populations and lack of the appropriate genetic models. Loegering's abstract interorganismal genetic model was modified so that one model represented all four possible interactions of dominant-recessive alins for an incompatible phenotype. This involved redefining the Boolean algebra symbol 1 to represent both the alins AND their frequencies. The model was used to derive the relationship: {ie893-01} where the expectation E of cysts (of any CN-S combination, as proportion of number of cysts on a check cultivar) is proportional to the product of CN genotypic frequencies expressed as functions of m-alin frequencies. Each m-alin is at a different locus, i.e., {ie893-02}. The number of terms multiplied for each CN-S is equal to the number of alins in the S line (or F2 plant). There are too many unknowns in the equation to solve for any of them. The relationship does explain the continuous distributions of phenotypes that were nearly always observed. Basic genetic principles were used to concurrently derive the models and to obtain discontinuous distributions of numbers of cyst phenotypes in segregating generations due to one recessive alin in a CN-susceptible soybean line.Contribution from the Missouri Agricultural Experiment Station, Journal Series No. 9739  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号