共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure determination of membrane proteins has highlighted the many roles played by lipids in influencing overall protein architecture. It is now widely accepted that lipids surrounding membrane proteins play crucial roles by modulating their conformational, structural, and functional properties. Capturing often transient lipid interactions and defining their chemical identity, however, remains challenging. Recent advances in mass spectrometry have resolved questions concerning lipid interactions by providing the molecular composition of intact complexes in association with lipids. Together with other biophysical tools, a picture is emerging of the dynamic nature of lipid-mediated interactions and their effects on conformation, interactions, and signaling. 相似文献
2.
Nikhil A. Gokhale 《Amino acids》2013,45(4):751-754
Proteins with polybasic clusters bind to negatively charged phosphoinositides at the cell membrane. In this review, I have briefly discussed the types of phosphoinositides naturally found on membrane surfaces and how they recruit protein complexes for carrying out the process of signal transduction. A large number of researchers from around the world are now focusing their attention on protein–membrane binding, as these interactions have started to offer us a much better insight into the process of cell signaling. The main areas discussed in this brief review article include the phosphoinositide binding specificities of proteins and the role of their lipid binding in signaling processes downstream of membrane recruitment. 相似文献
3.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pKa shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein–lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function. 相似文献
4.
Madina Mst Hur Rahman Md Saifur Zheng Huanquan Germain Hugo 《Plant molecular biology》2019,101(4-5):343-354
Plant Molecular Biology - Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant... 相似文献
5.
Konopka-Postupolska D 《Protoplasma》2007,230(3-4):203-215
Summary. The plasma membrane, the most external cellular structure, is at the forefront between the plant cell and its environment.
Hence, it is naturally adapted to function in detection of external signals, their transduction throughout the cell, and finally,
in cell reactions. Membrane lipids and the cytoskeleton, once regarded as simple and static structures, have recently been
recognized as significant players in signal transduction. Proteins involved in signal detection and transduction are organised
in specific domains at the plasma membrane. Their aggregation allows to bring together and orient the downstream and upstream
members of signalling pathways. The cortical cytoskeleton provides a structural framework for rapid signal transduction from
the cell periphery into the nucleus. It leads to intracellular reorganisation and wide-scale modulation of cellular metabolism
which results in accumulation of newly synthesised proteins and/or secondary metabolites which, in turn, have to be distributed
to the appropriate cell compartments. And again, in plant cells, the secretory vesicles that govern polar cellular transport
are delivered to their target membranes by interaction with actin microfilaments. In search for factors that could govern
subsequent steps of the cell response delineated above we focused on an evolutionary conserved protein family, the annexins,
that bind in a calcium-dependent manner to membrane phospholipids. Annexins were proposed to regulate dynamic changes in membrane
architecture and to organise the interface between secretory vesicles and the membrane. Certain proteins from this family
were also identified as actin binding, making them ideal mediators in cell membrane and cytoskeleton interactions.
Correspondence and reprints: Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of
Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland. 相似文献
6.
Flavonoids are polyphenolic compounds produced by plants and delivered to the human body through food. Although the epidemiological analyses of large human populations did not reveal a simple correlation between flavonoid consumption and health, laboratory investigations and clinical trials clearly demonstrate the effectiveness of flavonoids in the prevention of cardiovascular, carcinogenic, neurodegenerative and immune diseases, as well as other diseases. At present, the abilities of flavonoids in the regulation of cell metabolism, gene expression, and protection against oxidative stress are well-known, although certain biophysical aspects of their functioning are not yet clear. Most flavonoids are poorly soluble in water and, similar to lipophilic compounds, have a tendency to accumulate in biological membranes, particularly in lipid rafts, where they can interact with different receptors and signal transducers and influence their functioning through modulation of the lipid-phase behavior. In this study, we discuss the enhancement in the lipophilicity and antioxidative activity of flavonoids after their complexation with transient metal cations. We hypothesize that flavonoid–metal complexes are involved in the formation of molecular assemblies due to the facilitation of membrane adhesion and fusion, protein–protein and protein–membrane binding, and other processes responsible for the regulation of cell metabolism and protection against environmental hazards. 相似文献
7.
Atsuo Amano Hiroki Takeuchi Nobumichi Furuta 《Microbes and infection / Institut Pasteur》2010,12(11):791-798
Outer membrane vesicles (OMVs), ubiquitously shed from Gram-negative bacteria, contain various virulence factors such as toxins, proteases, adhesins, and lipopolysaccharide, which are utilized to establish a colonization niche, modulate host defense and response, and impair host cell function. Thus, OMVs can be considered as a type of bacterial offensive weapon. This review discusses the entry mechanism of OMVs into host cells as well as their etiological roles in host–parasite interactions. 相似文献
8.
《生物化学与生物物理学报:生物膜》2015,1848(3):833-841
To understand the molecular mechanisms of amphiphilic membrane-active peptides, one needs to study their interactions with lipid bilayers under ambient conditions. However, it is difficult to control the pH of the sample in biophysical experiments that make use of mechanically aligned multilamellar membrane stacks on solid supports. HPLC-purified peptides tend to be acidic and can change the pH in the sample significantly. Here, we have systematically studied the influence of pH on the lipid interactions of the antimicrobial peptide PGLa embedded in oriented DMPC/DMPG bilayers. Using solid-state NMR (31P, 2H, 19F), both the lipid and peptide components were characterized independently, though in the same oriented samples under typical conditions of maximum hydration. The observed changes in lipid polymorphism were supported by DSC on multilamellar liposome suspensions. On this basis, we can present an optimized sample preparation protocol and discuss the challenges of performing solid-state NMR experiments under controlled pH. DMPC/DMPG bilayers show a significant up-field shift and broadening of the main lipid phase transition temperature when lowering the pH from 10.0 to 2.6. Both, strongly acidic and basic pH, cause a significant degree of lipid hydrolysis, which is exacerbated by the presence of PGLa. The characteristic re-alignment of PGLa from a surface-bound to a tilted state is not affected between pH of 7 to 4 in fluid bilayers. On the other hand, in gel-phase bilayers the peptide remains isotropically mobile under acidic conditions, displays various co-existing orientational states at pH 7, and adopts an unknown structural state at basic pH. 相似文献
9.
Yoshihisa Oda 《Journal of plant research》2018,131(1):5-14
Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions. 相似文献
10.
Jacqueline Knobloch Daniel K. Suhendro Julius L. Zieleniecki Joseph G. Shapter Ingo K?per 《Saudi Journal of Biological Sciences》2015,22(6):714-718
The direct interaction of drugs with the cell membrane is often neglected when drug effects are studied. Systematic investigations are hindered by the complexity of the natural membrane and model membrane systems can offer a useful alternative. Here some examples are reviewed of how model membrane architectures including vesicles, Langmuir monolayers and solid supported membranes can be used to investigate the effects of drug molecules on the membrane structure, and how these interactions can translate into effects on embedded membrane proteins. 相似文献
11.
12.
14.
Plants encounter throughout their life all kinds of microorganisms, such as bacteria, fungi, or oomycetes, with either friendly or unfriendly intentions. During evolution, plants have developed a wide range of defense mechanisms against attackers. In return, adapted microbes have developed strategies to overcome the plant lines of defense, some of these microbes engaging in mutualistic or parasitic endosymbioses. By sensing microbe presence and activating signaling cascades, the plasma membrane through its dynamics plays a crucial role in the ongoing molecular dialogue between plants and microbes. This review describes the contribution of endocytosis to different aspects of plant–microbe interactions, microbe recognition and development of a basal immune response, and colonization of plant cells by endosymbionts. The putative endocytic routes for the entry of microbe molecules or microbes themselves are explored with a special emphasis on clathrin-mediated endocytosis. Finally, we evaluate recent findings that suggest a link between the compartmentalization of plant plasma membrane into microdomains and endocytosis. 相似文献
15.
Dipal M. Patel Adi D. Dubash Geri Kreitzer Kathleen J. Green 《The Journal of cell biology》2014,206(6):779-797
Mechanisms by which microtubule plus ends interact with regions of cell–cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP–EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell–cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP–EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases. 相似文献
16.
Jan R.T. van Weering Paul Verkade Peter J. Cullen 《Seminars in cell & developmental biology》2010,21(4):371-380
The endocytic network is morphologically characterized by a wide variety of membrane bound compartments that are able to undergo dynamic re-modeling through tubular and vesicular structures. The precise molecular mechanisms governing such re-modeling, and the events that co-ordinated this with the major role of endosomes, cargo sorting, remain unclear. That said, recent work on a protein family of sorting nexins (SNX) - especially a subfamily of SNX that contain a BAR domain (SNX-BARs) – has begun to shed some much needed light on these issues and in particular the process of tubular-based endosomal sorting. SNX-BARs are evolutionary conserved in endosomal protein complexes such as retromer, where they co-ordinate membrane deformation with cargo selection. Furthermore a central theme emerges of SNX-BARs linking the forming membrane carrier to cytoskeletal elements for transport through motor proteins such as dynein. By studying these SNX-BARs, we are gaining an increasingly detailed appreciation of the mechanistic basis of endosomal sorting and how this highly dynamic process functions in health and disease. 相似文献
17.
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function. 相似文献
18.
《生物化学与生物物理学报:生物膜》2015,1848(5):1248-1257
Membrane proteins regulate a large number of cellular functions, and have great potential as tools for manipulation of biological systems. Developing these tools requires a robust and quantitative understanding of membrane protein folding and interactions within the bilayer. With this in mind, we have designed a series of proteins to probe the net thermodynamic contribution of well-known sequence motifs to transmembrane helix-helix association in a biological membrane. The proteins were designed from first principles (de novo) using current knowledge about membrane insertion and stabilizing interaction motifs. A simple poly-Leu “scaffold” was decorated with individual helix interaction motifs (G-XXX-G, polar residues, heptad repeat) to create transmembrane helix–helix interactions of increasing strength. The GALLEX assay, an in vivo assay for measurement of transmembrane helix self-association, was combined with computational methods to characterize the relative strength and mode of interaction for each sequence. In addition, the apparent free energy contribution (ΔΔGapp) of each motif to transmembrane helix self-association was measured in a biological membrane, results that are the first of their kind for these de novo designed sequences, and suggest that the free energy barrier to overcoming weak association is quite small (< 1.4 kcal mol− 1) in a natural membrane. By quantifying and rationalizing the contribution of key motifs to transmembrane helix association, our work offers a route to direct the design of novel sequences for use in biotechnology or synthetic biology (e.g. molecular switches) and to predict the effects of sequence modification in known transmembrane domains (for control of cellular processes). 相似文献
19.
《Trends in parasitology》2023,39(7):588-602
The mass production of insects is rapidly expanding globally, supporting multiple industrial needs. However, parasite infections in insect mass-production systems can lower productivity and can lead to devastating losses. High rearing densities and artificial environmental conditions in mass-rearing facilities affect the insect hosts as well as their parasites. Environmental conditions such as temperature, gases, light, vibration, and ionizing radiation can affect productivity in insect mass-production facilities by altering insect development and susceptibility to parasites. This review explores the recent literature on environment–host–parasite interactions with a specific focus on mass-reared insect species. Understanding these complex interactions offers opportunities to optimise environmental conditions for the prevention of infectious diseases in mass-reared insects. 相似文献
20.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,750(1):51-60
Unilamellar liposomes with entrapped fluorescent dye calcein were stably immobilized in gel beads by avidin–biotin-binding. The immobilized liposomes remained extremely stable upon storage and chromatographic runs. The immobilized calcein-entrapped liposomes were utilized for fluorescent analysis of solute–membrane interactions, which in some cases are too weak to be detected by chromatographic retardation. A liposome column was used as a sensitive probe to detect the interactions of membranes with pharmaceutical drugs, peptides and proteins. Retardation of the solutes was monitored using a UV detector. Perturbation of the membranes, reflected as leakage of the entrapped calcein by some of the solutes, can thus be detected on-line using a flow-fluorescent detector. For the amphiphilic drugs or synthetic peptides, perturbation of membranes became more pronounced when the retardation (hydrophobicity) of the molecules increased. On the other hand, in the case of positively-charged peptides, polylysine, or partially denatured bovine carbonic anhydrase, significant dye leakage from the liposomes was observed although the retardation was hardly to be measured. Weak protein–membrane interactions can thus be assumed from the large leakage of calcein from the liposomes. This provides additional useful information for solute–membrane interactions, as perturbation of the membranes was also indicated by avidin–biotin-immobilized liposome chromatography (ILC). 相似文献