首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution via sexual selection has traditionally been viewed as isolated from life-history constraints. As additionally reproductive resource allocation in males is underexplored, it is rather unclear how life-history factors have shaped lifetime investment into male sexually selected traits. Against this background, we here investigate male butterfly mating success in relation to age, nutritional status, assay condition and wing damage. As predicted, based on a low residual reproductive value, older males had a considerably higher mating success than younger males. Comparisons between virgin and once-mated males suggest that this pattern is related to age per se rather than differential ratings of the resource receptive female. We found no evidence for male body size or condition being important, supporting the notion that in weaponless animals intrinsic motivation is more important for mating success than the differences in physical properties (such as body size or condition). Flight cage experiments suggest that such differences in motivation may be masked under more natural conditions, where flight performance, having a clear impact on mating success (as evidenced by wing manipulation experiments), is likely to be crucial. We conclude that the life-history perspective is a fruitful one for gaining a better understanding of the evolution of sexually selected characters and the predictions derived from contest theory do also apply to male mating success.  相似文献   

2.
Flight initiation distance (FID) is the distance at which an individual animal takes flight when approached by a human. This behavioural measure of risk‐taking reflects the risk of being captured by real predators, and it correlates with a range of life history traits, as expected if flight distance optimizes risk of predation. Given that FID provides information on risk of predation, we should expect that physiological and morphological mechanisms that facilitate flight and escape predict interspecific variation in flight distance. Haematocrit is a measure of packed red blood cell volume and as such indicates the oxygen transport ability and hence the flight muscle contracting reaction of an individual. Therefore, we predicted that species with short flight distances, that allow close proximity between a potential prey individual and a predator, would have high haematocrit. Furthermore, we predicted that species with large wing areas and hence relatively low costs of flight and species with large aspect ratios and hence high manoeuvrability would have evolved long flight speed. Consistent with these predictions, we found in a sample of 63 species of birds that species with long flight distances for their body size had low levels of haematocrit and large wing areas and aspect ratios. These findings provide evidence consistent with the evolution of risk‐taking behaviour being underpinned by physiological and morphological mechanisms that facilitate escape from predators and add to our understanding of predator–prey coevolution.  相似文献   

3.
For passerines the starvation‐predation risk theory predicts that birds should decrease their body mass to improve escape flight performance, when predation pressure increases. To investigate whether this theory may apply to large birds, which manage body reserves differently from small passerines, we experimentally increased the predation risk in mallards Anas platyrhynchos. Two groups were disturbed at different frequencies during experimental sessions lasting one week, while a control group was left undisturbed. We found that body mass loss and final wing loading were similar in both disturbed groups and significantly differed from the control group. Food intake in disturbed groups was reduced up to day four of the disturbance session and was lower than in the control group. Altogether our results suggest that disturbed mallards may adjust their body mass to reach a more favorable wing loading, supposedly to improve escape flight performance. Nevertheless, body mass loss in our mallards was double than what has been observed in passerines. This greater mass decrease might be explained by different strategies concerning energy storage. Furthermore, in large birds the predation component of the starvation‐predation trade‐off might be of greater importance. Hence, the observed relevance of this trade‐off over a large size range suggests that the starvation‐predation risk theory is of major ecological significance for many animal species.  相似文献   

4.
Wing shape is related to flight performance, which is expected to be under selection for improving flight behaviours such as predator avoidance. Moreover, wing conspicuousness, usually involved in sexual selection processes, is also relevant in terms of predation risk. In this study, we examined how predation by a passerine bird, the white wagtail Motacilla alba, selects wing shape and wing colour patch size in males of the banded demoiselle Calopteryx splendens. The wing colour patch is intra‐ and intersexually selected in the study species. In a field study, we compared wings of live damselflies to wings of predated damselflies which are always discarded after predation. Based on aerodynamic theory and a previous study on wing shape of territorial tactics in damselflies, we predicted an overall short and broad wing, with a concave front margin shape to be selected by predation. This shape would be expected to improve escaping ability. Moreover, we predicted that wing patch size should be negatively selected by predation. We found that selection operated differently on fore‐ and hindwings. In contrast to our predictions, predation favoured a slender general forewing shape. However, the predicted wing shape was favoured in hindwings. We also found selection favouring a narrower wing colour patch. Our results suggest different roles of fore‐ and hindwings in flight, as previously suggested for Calopteryx damselflies and shown for butterflies and moths. Forewings would be more involved in sustained flight and hindwings in flight manoeuvrability. Our results differ somehow from a recently published work in the same study system, but using another population, suggesting that selection can fluctuate across space, despite the simplicity of this predator–prey system.  相似文献   

5.
Two experiments were done to examine the predation of thrips, and the movement of Orius laevigatus Fieber and Neoseiulus cucumeris (Oudemans) in the presence and absence of two supplemental food sources, pollen and the fungus Trichoderma viride. The presence of pollen led to a 55% reduction in predation of the thrips by N. cucumeris and a 40% reduction in thrips predation by O. laevigatus, in experiments using single predators. The presence of fungus had no significant effect on thrips predation by either of the natural enemy species. Movement of the natural enemies was examined in a multiple predator experiment, and this showed that O. laevigatus was more likely to remain on the plant in the presence of thrips and when supplemental food, either pollen or fungus, was present. For N. cucumeris, there was no association between the presence of thrips and the mite, with the majority of the mites being found on the leaves where pollen was present. Although the single and multiple predator experiments were done at different times, the indications are that the predation rates of the N. cucumeris do not differ greatly between the two experiments, suggesting that there may be a potential interference effect between the mites, which is not present for O. laevigatus. The significance of these results for the use of supplemental food sources in biological control is discussed.  相似文献   

6.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

7.
Butterflies have distinctively large wings relative to body size, but the functional and fitness consequences of wing size for butterflies are largely unknown. I use natural and experimentally generated variation in wing surface area to examine how decreased wing size affects flight and survival in a population of the western white butterfly, Pontia occidentalis. In the laboratory, experimental reductions in wing area (reduced-wings manipulation) significantly increased wingbeat frequencies of hovering butterflies, whereas a control manipulation had no detectable effects. In contrast, behavioral observations and mark-release-recapture (MRR) studies in the field detected no significant differences in flight activity, initial dispersal rates, or recapture probabilities among treatment groups. Estimated selection coefficients indicated that natural variation in wing size, body mass, and wing loading in the population were not significantly correlated with survival in the two MRR studies. In two mark-recapture studies with manipulated butterflies, survival probabilities were not significantly different for reduced-wings individuals compared with control or unmanipulated individuals. In summary, experimental reductions in wing area significantly altered aspects of flight in the laboratory, but did not detectably alter flight or survival in the field for this population. The large wing size typical of butterflies may reduce the functional and survival consequences of wing size variation within populations.  相似文献   

8.
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.  相似文献   

9.
1. Determining which environmental traits enable animals to inhabit and choose preferred habitats is key to understanding ecological processes. Habitat complexity and background colour patterns can act as selective pressures on animal behaviour, and ultimately affect habitat choice. 2. To investigate the role of environmental features on habitat selection, this study looked at whether dragonfly and damselfly larvae show a preference between dark/light or complex environments. Last‐instar larvae of Micrathyria didyma (Odonata: Libellulidae) and Acanthagrion lancea (Odonata: Coenagrionidae) were collected in the Neotropical savanna, and five experiments in laboratory conditions were subsequently carried out. The first experiment tested the preference of larvae for leaves in contrast to a white background. The second experiment compared a preference for white and black backgrounds. As both experiments showed a significant preference for darker backgrounds, a predator was included in the black background in the third experiment, and a macrophyte was included in the white background in the fourth experiment. In this way, favourable and unfavourable conditions were included in the habitat of choice. The fifth experiment tested the influence of environmental complexity on habitat choice. 3. The results of these experiments showed that larvae choose darker backgrounds independently of predation risk, and that macrophytes are as attractive as a dark background. They also suggest that the coenagrionid, but not the libellulid, prefer more complex environments. 4. Overall, these findings suggest that larvae exhibit behavioural preferences for background colour and complexity, which may ultimately drive habitat occupation.  相似文献   

10.
Melvin SD  Houlahan JE 《Oecologia》2012,169(4):861-868
Laboratory experiments are widely used to study how populations in nature might respond to various biological interactions, but the relevance of experiments in artificial venues is not known. We compiled mortality and growth data from 424 anuran populations carried out under laboratory, mesocosm, field enclosure, and field settings to determine if major differences exist amongst experimental venues and how this might influence experimental responses of tadpoles amongst venues. Our results show that there are fundamental differences in survival amongst venues, with the highest mortality occurring in field populations and the lowest in laboratory populations. Separation of mesocosm and field enclosure data based on the possibility of predatory interactions indicates that predation is an important factor leading to increased mortality in natural populations. Comparisons of size distributions across venues (although size data were limited for field populations) suggest that variation in tadpole size is low in natural populations compared to populations in artificial venues. We infer from this that mortality has a homogenizing effect on size in nature, resulting in natural populations that are not a random sample of hatched individuals. This finding suggests that populations reared under controlled laboratory conditions in the absence of predation (and other selective pressures) may not be representative of natural populations.  相似文献   

11.
Thiel  Martin  Ullrich  Niklas  Vásquez  Nelson 《Hydrobiologia》2001,456(1-3):45-57
Estimates of the predation rates of benthic nemerteans are often based on observations of single individuals, and consequently they may not be representative for all members of a population of these predators. Herein we conducted controlled and repeatable laboratory experiments on the predation rate of the hoplonemertean Amphiporus nelsoni Sánchez 1973, which is common at exposed rocky shores along the central Chilean coast. During the austral fall (April, May 2000), nemerteans were observed in relatively high numbers crawling in the intertidal zone during early morning or late-afternoon low tides. When these nemerteans were offered living amphipods held by a forceps, they immediately attacked the amphipods and fed on them. In the laboratory experiments, nemerteans preferred the amphipod Hyale maroubrae Stebbing, 1899, which is also very common in the natural habitat of A. nelsoni. The nemerteans preyed to a higher extent on small males and non-ovigerous females than would have been expected from their abundance. We suggest that these (non-reproductive) stages of H. maroubrae are very mobile and therefore have a high likelihood of encounters with nemerteans. Predation rates reached maxima when nemerteans were provided prey densities of four or more of their preferred prey species, H. maroubrae, furthermore indicating that encounter rates with prey may affect predation rates. In long-term laboratory experiments, A. nelsoni consumed more amphipods during low tide conditions than during high tide conditions. Many nemerteans in the field prefer particular environmental conditions (e.g. nocturnal low tides), which restricts the time available for successful feeding. In the long-term experiment, predation rates of A. nelsoni never exceeded 0.5 amphipods nemertean–1 d–1. Maximum feeding events were 3 or 4 amphipods nemertean–1 d–1, but this only occurred during 10 out of a possible 2634 occasions. Nemerteans that had consumed 3 or 4 amphipods during 1 day, consumed substantially less prey during the following days. Towards the end of the long-term experiment, average predation rates decreased to 0.2 amphipods nemertean–1 d–1, corresponding to predation rates reported for other nemertean species (0.1–0.3 prey items nemertean–1 d–1). We suggest that predation rates from laboratory experiments represent maximum estimates that may not be directly transferable to field populations. Additionally, low predator–prey encounter rates with preferred prey in the field may further limit the predation impact of nemertean predators in natural habitats.  相似文献   

12.
1. Individual movement behaviour governs several routine processes, and may scale up to important ecological processes, including dispersal. However, movement is affected by a wealth of factors, including abiotic conditions, flight performance, and behavioural traits. Although it has been historically assumed that insect flight is in the first place ruled by physiology and morphology, researchers have only recently begun to understand the potentially important role of behavioural traits. 2. This study aims to disentangle the relative importance of thermal conditions during development, and especially flight performance (capacity), versus behaviour (intrinsic motivation) in relation to movement attributes (i.e. time until take‐off, number of positions visited) under controlled laboratory conditions in the tropical butterfly Bicyclus anynana. 3. As predicted, links were found between flight performance (forced flight) and morphological traits (body size). However, this link was less pronounced for movement and exploratory behaviour, suggesting a more pronounced role of intrinsic motivation on the actual decision to move, or not. Thus, flight performance and movement may not be intimately associated. 4. Flight behaviour was mainly determined by sexual differences, with males showing better flight performance, higher mobility, and enhanced exploration than females. 5. Lower developmental temperatures increased thorax–abdomen ratio, thorax mass, and exploratory behaviour, and decreased wing loading. This may potentially aid flight capacity under thermally challenging conditions. 6. This study adds to the growing evidence that behavioural traits should not be neglected when investigating movement and dispersal, as they may well play a crucially important role.  相似文献   

13.
Chemical alarm cues function as early indicators of a predation threat and influence the outcome of predator–prey interactions in the favour of the prey animal. The tropical goby, Asterropteryx semipunctatus, responded with a stereotypical alarm response, including reduced movement and feeding, following exposure to water that contained chemical cues from injured conspecifics under natural field conditions. Gobies did not exhibit an alarm response when challenged with extracts from damaged fish from a different taxonomic family. The behavioural response in the field was similar to that observed in laboratory experiments. This study verifies the use of chemical alarm cues in a marine fish in their natural environment.  相似文献   

14.
The hypothesis of the selfish herd has been highly influential to our understanding of animal aggregation. Various movement strategies have been proposed by which individuals might aggregate to form a selfish herd as a defence against predation, but although the spatial benefits of these strategies have been extensively studied, little attention has been paid to the importance of predator attacks that occur while the aggregation is forming. We investigate the success of mutant aggregation strategies invading populations of individuals using alternative strategies and find that the invasion dynamics depend critically on the time scale of movement. If predation occurs early in the movement sequence, simpler strategies are likely to prevail. If predators attack later, more complex strategies invade. If there is variation in the timing of predator attacks (through variation within or between individual predators), we hypothesize that groups will consist of a mixture of strategies, dependent upon the distribution of predator attack times. Thus, behavioural diversity can evolve and be maintained in populations of animals experiencing a diverse range of predators differing solely in their attack behaviour. This has implications for our understanding of predator–prey dynamics, as the timing of predator attacks will exert selection pressure on prey behavioural responses, to which predators must respond.  相似文献   

15.
Variation in the degree of insect wing melanin affects thermoregulation, and is expected to be adapted to local environmental conditions, for example over an elevational gradient. The effects of melanization on flight activity and egg maturation rate were assessed in the closely related butterflies Colias philodice eriphyle and C. eurytheme using experimental manipulation of wing darkness and transplant experiments between high and low elevation sites. Experimental manipulation of wing darkness in C. p. eriphyle demonstrated that light males had reduced flight activity at high elevations, and darkened males had reduced flight activity at low elevations. In contrast, the transplant experiments revealed asymmetrical adaptation for male C. p. eriphyle . At high elevations darker, high-elevation males had higher flight activity than lighter, low-elevation males, but there was no difference between the two groups at low elevation. For females, melanization had no effect on flight activity. However, an increase in female C. eurytheme wing darkness led to a significantly higher egg maturation rate at cold ambient temperatures, which may increase female reproductive output under natural conditions. Therefore, dispersers moving down in elevation may be more successful than those moving up.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 79–87.  相似文献   

16.
Visual signaling in animals can serve many uses, including predator deterrence and mate attraction. In many cases, signals used to advertise unprofitability to predators are also used for intraspecific communication. Although aposematism and mate choice are significant forces driving the evolution of many animal phenotypes, the interplay between relevant visual signals remains little explored. Here, we address this question in the aposematic passion‐vine butterfly Heliconius erato by using color‐ and pattern‐manipulated models to test the contributions of different visual features to both mate choice and warning coloration. We found that the relative effectiveness of a model at escaping predation was correlated with its effectiveness at inducing mating behavior, and in both cases wing color was more predictive of presumptive fitness benefits than wing pattern. Overall, however, a combination of the natural (local) color and pattern was most successful for both predator deterrence and mate attraction. By exploring the relative contributions of color versus pattern composition in predation and mate preference studies, we have shown how both natural and sexual selection may work in parallel to drive the evolution of specific animal color patterns.  相似文献   

17.
Evolutionary innovations are central to debates about biological uniformitarianism because their very novelty implies a distinct evolutionary dynamic. Traditional scenarios for innovations in the development of avian powered flight exemplify the kinds of distinctions considered to occur at different times during the history of innovations. Thus, the progressive change of the wing stroke mechanism early in its evolution is considered to have imposed strong functional and historical constraints on tail shape diversity, whereas attainment of the modern flight stroke mechanism is considered to have liberated the tail to radiate into a wide variety of other functions and forms. Detailed analyses of living hummingbirds revealed that these highly aerial birds actually expressed many parallel functional constraints and historically progressive patterns observed earlier in avian history: (1) more basal lineages had relatively weak wing muscles (patagial muscles and tendons, TPB), convex to square tails, and more linear flight employed in nonterritorial foraging; (2) more derived lineages had a stronger TPB, forked tails, accentuated growth of tail fork, and more manoeuvrable and agile flight employed in territorial foraging; and (3) the most derived lineage had the strongest TPB, greatly reduced tails, and mainly bee-like flight. These associations make functional sense because convex tails increase stability and efficiency in linear flight, concave tails augment lift for turning flight in territorial defence, and tails become aerodynamically disadvantageous if the wings provide sufficient lift. Derived hummingbird lineages also demonstrated the same expansion of tail shape and taxonomic diversity associated with perfection of the modern wing stroke mechanism earlier in avian history. Thus, living hummingbirds are a microcosm of overall avian flight evolution. Other living avian (‘aerial courser') and extinct reptilian (Pterosaur) clades with extraordinary flight abilities provide evidence for similar patterns, suggesting a broadly defined uniformitarianism (early constraint followed by later radiation) at the limits of the flight performance envelope throughout vertebrate history. Correlated evolution of TPB and tail form suggests that natural selection on an integrated flight system was the principal mechanism fostering the avian patterns, although strengthening of wing muscles in derived lineages may have facilitated expansion of caudal morphological diversity through a balance between natural and sexual selection on males. These findings suggest that wing muscles, locomotor integration, and phylogenetic patterns are essential for understanding function and adaptation of tails in living as well as ancient birds. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 467–493.  相似文献   

18.
Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow‐based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade‐off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species’ mating systems and mating behaviors.  相似文献   

19.
Kunert G  Weisser WW 《Oecologia》2003,135(2):304-312
Natural enemies not only influence prey density but they can also cause the modification of traits in their victims. While such non-lethal effects can be very important for the dynamic and structure of prey populations, little is known about their interaction with the density-mediated effects of natural enemies. We investigated the relationship between predation rate, prey density and trait modification in two aphid-aphid predator interactions. Pea aphids (Acyrthosiphon pisum, Harris) have been shown to produce winged dispersal morphs in response to the presence of ladybirds or parasitoid natural enemies. This trait modification influences the ability of aphids to disperse and to colonise new habitats, and hence has a bearing on the population dynamics of the prey. In two experiments we examined wing induction in pea aphids as a function of the rate of predation when hoverfly larvae (Episyrphus balteatus) and lacewing larvae (Chrysoperla carnea) were allowed to forage in pea aphid colonies. Both hoverfly and lacewing larvae caused a significant increase in the percentage of winged morphs among offspring compared to control treatments, emphasising that wing induction in the presence of natural enemies is a general response in pea aphids. The percentage of winged offspring was, however, dependent on the rate of predation, with a small effect of predation on aphid wing induction at very high and very low predation rates, and a strong response of aphids at medium predation rates. Aphid wing induction was influenced by the interplay between predation rate and the resultant prey density. Our results suggests that density-mediated and trait-mediated effects of natural enemies are closely connected to each other and jointly determine the effect of natural enemies on prey population dynamics.  相似文献   

20.
Many species of waterfowl undergo a post‐breeding simultaneous flight feather moult (wing moult) which renders them flightless and vulnerable to predation for up to 4 weeks. Here we present an analysis of the correlations between individual time‐budgets and body mass states in 13 captive Barnacle Geese Branta leucopsis throughout an entire wing moult. The daily percentage of time spent resting was positively correlated with initial body mass at the start of wing moult. Behaviour of individual birds during wing moult is dependent on initial physiological state, which may in turn be dependent on foraging ability; the storage of energy before the start of wing moult will help birds to reduce exposure to the dangers of predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号