首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental studies have shown that a mutator allele can readily hitchhike to fixation with beneficial mutations in an asexual population having a low, wild-type mutation rate. Here, we show that a genotype bearing two mutator alleles can supplant a population already fixed for one mutator allele. Our results provide experimental support for recent theory predicting that mutator alleles will tend to accumulate in asexual populations by hitchhiking with beneficial mutations, causing an ever-higher genomic mutation rate.  相似文献   

2.
3.
Three lines of evidence indicate that arginine-46 (R46) and arginine-275 (R275) are essential to the function of UhpT, the Pi-linked antiport protein of Escherichia coli. A role for arginine was initially suggested by the sensitivity of UhpT to inhibition by 2,3-butanedione, an arginine-directed probe. Since the presence of substrate protected against this inhibition, this work further suggested that arginine(s) may lie at or near the UhpT active site. In other work, each UhpT arginine was examined individually by using site-directed mutagenesis to generate a cysteine or a lysine derivative. With two exceptions (R46, R275), all arginines could be replaced by either cysteine (10 of 14 residues) or lysine (12 of 14) without loss of function, implicating R46 and R275 as essential to UhpT function. This idea was strengthened by examining a multiple alignment of the eleven known UhpT-related proteins (≥30% identity). That alignment showed R46 and R275 were two of the only three arginines strongly conserved in this group of proteins. Considered together, these different approaches lead us to conclude that UhpT and its relatives have only two arginine residues (R46, R275) whose presence is essential to function. Prior biochemical work had placed R275 at the external entrance to the translocation pathway, and a symmetry argument emerging from the multiple alignment suggests a similar position for R46. Accordingly, by virtue of their locations at the entrance to this pathway, we speculate that R46 and R275 function in establishing substrate specificity. Received: 29 January 1998/Revised: 13 April 1998  相似文献   

4.
5.
Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.  相似文献   

6.
Previous studies have shown that the mutT, mutH, mutL and mutS mutators of Escherichia coli confer a marked selective advantage on their respective hosts in competition with otherwise isogenic wild-type strains. We have conducted competition experiments between dam- and dam+ strains of Escherichia coli and have found that dam mutator strains are negatively selected. Although dam- is the first mutator to have a lower fitness than wild-type under chemostat conditions our result does not contradict the hypothesis that increased mutation rates are of evolutionary advantage under environmental stress conditions. Only in the special case of dam- does the advantage of higher mutation rates not outweigh the disadvantage due to the dam- -caused heavy pleiotropic effects.  相似文献   

7.
Fructose-1,6-bisphosphate activates ADP-glucose pyrophosphorylase and the synthesis of glycogen in Escherichia coli. Here, we show that although pyruvate is a weak activator by itself, it synergically enhances the fructose-1,6-bisphosphate activation. They increase the enzyme affinity for each other, and the combination increases V max, substrate apparent affinity, and decreases AMP inhibition. Our results indicate that there are two distinct interacting allosteric sites for activation. Hence, pyruvate modulates E. coli glycogen metabolism by orchestrating a functional network of allosteric regulators. We postulate that this novel dual activator mechanism increases the evolvability of ADP-glucose pyrophosphorylase and its related metabolic control.  相似文献   

8.
The conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the following order: hexamer–trimer–dimer–monomer. The activity of trimeric and dimeric forms was high enough to study and to compare their catalytic properties. The monomeric form of the enzyme was unstable.  相似文献   

9.
The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of d- and l-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by l-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well.  相似文献   

10.
The conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the order: hexamer-trimer-dimer-monomer. The activity of trimeric and dimeric forms was high enough to study and to compare their catalytic properties. The monomeric form of the enzyme was unstable.  相似文献   

11.
SecA protein, the protein translocation ATPase of Escherichia coli, autogenously regulates its translation during normal protein secretion by binding to a secretion-responsive element located near the 5' end of its gene on geneX-secA mRNA. In order to characterize this autoregulation further, RNA footprinting and primerextension inhibition (toeprinting) studies were carried out with a segment of geneX-secA RNA, 30S ribosomal subunits and tRNAfMet along with purified SecA protein. The results show that ribosome and SecA-binding sites overlap, indicating that a simple competition for binding of geneX-secA mRNA presumably governs the translation initiation step. Further analysis showed that SecA protein was able to specifically dissociate a preformed 30S-tRNAfMet-geneX-secA RNA ternary complex as indicated by the disappearance of its characteristic toeprint after SecA addition. These findings are consistent with secA autoregulation, and they suggest a novel mechanism for the autoregulatory behavior of this complex protein.  相似文献   

12.
Escherichia coli heat-labile enterotoxin (LT) is a holotoxin which consists of one A and five B subunits. Although B subunit monomers released into periplasm can associate into pentameric structures in the absence of the A subunit, the A subunit accelerates the assembly. To express the function, A subunit constructs the proper spatial structure. However, the regions involved in the construction are unknown. To identify the regions, we substituted arginine residues near position 146 of the A subunit with glycine by oligonucleotide-directed site-specific mutagenesis and obtained the mutants expressing LT(R141G), LT(R143G), LT(R146G), LT(R143G, R146G), LT(R141G, R143G, R146G) and LT(R143G, R146G, R148G). We purified these mutant LTs by using an immobilized d -galactose column and analyzed the purified mutant LTs by SDS-PAGE to examine the amount of A subunit associated with B-subunit oligomer. The substitution of an arginine residue at any position did not induce a significant alteration in the amount of A subunit associated with B-subunit oligomer. However, the substitution of more than two arginine residues induced a significant decrease in the amount of A subunits associated with the B-subunit oligomer. Subsequently, we measured the level of the intracellular B-subunit oligomer of these mutant strains. The measurement revealed that the amount of B-subunit oligomer in cells decreased as the number of substituted arginine residues increased. These results show that all arginine residues near position 146 are important for the construction of the functional A subunit, and thus for holotoxin formation, although each individual arginine residue is not an absolute requirement.  相似文献   

13.
SsrA is a tmRNA involved in tagging polypeptides on stalled ribosomes. The resulting fusion proteins are then degraded. We purified endogenous SsrA-tagged proteins by means of a genetically engineered SsrA and identified some of them. Analysis of the proteins suggested that they are tagged at their C-terminal extremities. One of them, ribokinase, is expressed from a messenger with a poorly efficient stop codon, leading to translational recoding events. A change in the ribokinase coding sequence from a weak to a strong translational stop sequence (UGAc to UAAu) annihilated SsrA tagging. Translational termination by UGA recruits the translational release factor (RF) 2. We observed that SsrA tagging of ribokinase was inversely correlated with RF2 activity, revealing a dynamic competition between translational termination and SsrA tagging.  相似文献   

14.
Escherichia coli strains J53(nal) and J53(RP4) were grown together in glucose-limited continuous cultures. Based on the measured growth kinetic constants of the two strains, take-over of the cultures by J53(RP4) was predicted. However, in practice, an initial period of predominance by J53(RP4) was always followed by a prolonged period in which relative numerical proportions of the two strains oscillated widely. This period of oscillation was removed or greatly reduced when the difference between the predicted growth-rate potentials of the two strains was increased by selection of a chemostat-adapted variant of J53(RP4).  相似文献   

15.
16.
Uracil–DNA glycosylase (Ung) is a DNA repair enzyme that excises uracil bases from DNA, where they appear through deamination of cytosine or incorporation from a cellular dUTP pool. DNA repair enzymes often use one-dimensional diffusion along DNA to accelerate target search; however, this mechanism remains poorly investigated mechanistically. We used oligonucleotide substrates containing two uracil residues in defined positions to characterize one-dimensional search of DNA by Escherichia coli Ung. Mg2+ ions suppressed the search in double-stranded DNA to a higher extent than K+ likely due to tight binding of Mg2+ to DNA phosphates. Ung was able to efficiently overcome short single-stranded gaps within double-stranded DNA. Varying the distance between the lesions and fitting the data to a theoretical model of DNA random walk, we estimated the characteristic one-dimensional search distance of ∼100 nucleotides and translocation rate constant of ∼2 × 106 s−1.  相似文献   

17.
18.
A tyrosine-requiring strain of Escherichia coli was grown in tyrosine-limited chemostats at a range of dilution rates between 0.08 h-1 and 0.42 h-1, conditions which always resulted in the selection of a prototrophic revertant population able to synthesise tyrosine. Analysis of the two-membered mixed cultures which arose showed that the prototrophic population outgrew the auxotroph since its growth rate was not restricted by the growth-limiting concentrations of exogenous tyrosine. During the take-over of the culture, the prototroph population grew exponentially but the specific growth rate increased with decreasing dilution rate of the competition experiments. In glucose-limited chemostats (in the presence of non-growth-limiting concentrations of tyrosine) of the tyrosine-requiring strain, prototrophs were never detected. Constructed two-membered mixed cultures with both populations competing for limiting amounts of glucose, showed that the prototroph was less competitive than the auxotroph.This work was supported by a grant from the Science Research Council.  相似文献   

19.
B Epe  P Woolley  H Hornig 《FEBS letters》1987,213(2):443-447
Fluorescence anisotropy studies performed on 6-demethylchlortetracycline, binding to the ribosome of E. coli in competition with tRNA at the P site or at both P and A sites, have provided a quantitative assessment in situ of the interaction of this antibiotic with the A site and have demonstrated that there is also an interaction between tetracycline and the P site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号