首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Numerical simulations are used to investigate the wake structure and hydrodynamic performance of bionic flapping foils. The study is motivated by the quest to understand the fluid dynamics of fish fins and use it in the underwater propulsion. The simulations employ an immersed boundary method that makes it possible to simulate flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of flapping foils is dominated by two sets of complex shaped vortex rings that convect at oblique angles to the wake centerline. The wake of these flapping foils is characterized by two oblique jets. Simulations are also used to examine the wake vortex and hydrodynamic performance over a range of Strouhal numbers and maximum pitch angles and the connection between the foil kinematics, vortex dynamics and force production is discussed. The results show that the variety law of the hydrodynamic performance with kinematic parameters strongly depends on the flow dynamics underlying the force production, including the orientation, interconnection and dissipation rate of the vortex rings.  相似文献   

2.
In locomotion that involves repetitive motion of propulsive structures (arms, legs, fins, wings) there are resonant frequencies f(*) at which the energy consumption is a minimum. As animals need to change their speed, they can maintain this energy minimum by tuning their body resonances. We discuss the physical principles of frequency tuning, and how it relates to forces, damping, and oscillation amplitude. The resonant frequency of pendulum-type oscillators (e.g. swinging arms and legs) may be changed by varying the mass moment of inertia, or the vertical acceleration of the pendulum pivot. The frequency of elastic vibrations (e.g. the bell of a jellyfish) can be tuned with a non-linear modulus of elasticity: soft for low deflection amplitudes (low resonant frequency), and stiff for large displacements (high resonant frequency). Tuning of elastic oscillations can also be achieved by changing the effective length or cross-sectional area of the elastic members, or by allowing springs in parallel or in series to become active. We propose that swimming and flying animals generate oscillating propulsive forces from precisely placed shed vortices and that these tuned motions can only occur when vortex shedding and the simple harmonic motion of the elastic elements of the propulsive structures are in resonance.  相似文献   

3.
A numerical study was conducted in order to investigate the unsteady aerodynamics of finite-span flapping rigid wings. The unsteady laminar incompressible Navier-Stokes equations were solved on moving overlapping structured grids using a second-order accurate in space and time finite-difference scheme. Specifically, finite-span rigid wings undergoing pure heaving and root-flapping motions were studied. From the results presented, it is found that root-flapping wings produce wake structures similar to those of heaving wings, but with the difference that the latter wing kinematics generates larger vortices and forces than root-flapping wings; aside from this, similar wake regimes occur at comparable values of the Strouhal number. The numerical simulations were performed at a Reynolds number of Re = 250 and at different values of Strouhal number and reduced frequency.  相似文献   

4.
Squids encounter vastly different flow regimes throughout ontogeny as they undergo critical morphological changes to their two locomotive systems: the fins and jet. Squid hatchlings (paralarvae) operate at low and intermediate Reynolds numbers (Re) and typically have rounded bodies, small fins, and relatively large funnel apertures, whereas juveniles and adults operate at higher Re and generally have more streamlined bodies, larger fins, and relatively small funnel apertures. These morphological changes and varying flow conditions affect swimming performance in squids. To determine how swimming dynamics and propulsive efficiency change throughout ontogeny, digital particle image velocimetry (DPIV) and kinematic data were collected from an ontogenetic range of long-finned squid Doryteuthis pealeii and brief squid Lolliguncula brevis swimming in a holding chamber or water tunnel (Re = 20-20 000). Jet and fin wake bulk properties were quantified, and propulsive efficiency was computed based on measurements of impulse and excess kinetic energy in the wakes. Paralarvae relied predominantly on a vertically directed, high frequency, low velocity jet as they bobbed up and down in the water column. Although some spherical vortex rings were observed, most paralarval jets consisted of an elongated vortical region of variable length with no clear pinch-off of a vortex ring from the trailing tail component. Compared with paralarvae, juvenile and adult squid exhibited a more diverse range of swimming strategies, involving greater overall locomotive fin reliance and multiple fin and jet wake modes with better defined vortex rings. Despite greater locomotive flexibility, jet propulsive efficiency of juveniles/adults was significantly lower than that of paralarvae, even when juvenile/adults employed their highest efficiency jet mode involving the production of periodic isolated vortex rings with each jet pulse. When the fins were considered together with the jet for several juvenile/adult swimming sequences, overall propulsive efficiency increased, suggesting that fin contributions are important and should not be overlooked in analyses of the swimming performance of squids. The fins produced significant thrust and consistently had higher propulsive efficiency than did the jet. One particularly important area of future study is the determination of coordinated jet/fin wake modes that have the greatest impact on propulsive efficiency. Although such research would be technically challenging, requiring new, powerful, 3D approaches, it is necessary for a more comprehensive assessment of propulsive efficiency of the squid dual-mode locomotive system.  相似文献   

5.
Despite enormous progress during the last twenty years in understandingthe mechanistic basis of aquatic animal propulsion—a taskinvolving the construction of a substantial data base on patternsof fin and body kinematics and locomotor muscle function—thereremains a key area in which biologists have little information:the relationship between propulsor activity and water movementin the wake. How is internal muscular force translated intoexternal force exerted on the water? What is the pattern offluid force production by different fish fins (e.g., pectoral,caudal, dorsal) and how does swimming force vary with speedand among species? These types of questions have received considerableattention in analyses of terrestrial locomotion where forceoutput by limbs can be measured directly with force plates.But how can forces exerted by animals moving through fluid bemeasured? The advent of digital particle image velocimetry (DPIV)has provided an experimental hydrodynamic approach for quantifyingthe locomotor forces of freely moving animals in fluids, andhas resulted in significant new insights into the mechanismsof fish propulsion. In this paper we present ten "lessons learned"from the application of DPIV to problems of fish locomotionover the last five years. (1) Three-dimensional DPIV analysisis critical for reconstructing wake geometry. (2) DPIV analysisreveals the orientation of locomotor reaction forces. (3) DPIVanalysis allows calculation of the magnitude of locomotor forces.(4) Swimming speed can have a major impact on wake structure.(5) DPIV can reveal interspecific differences in vortex wakemorphology. (6) DPIV analysis can provide new insights intothe limits to locomotor performance. (7) DPIV demonstrates thefunctional versatility of fish fins. (8) DPIV reveals hydrodynamicforce partitioning among fins. (9) DPIV shows that wake interactionamong fins may enhance thrust production. (10) Experimentalhydrodynamic analysis can provide insight into the functionalsignificance of evolutionary variation in fin design.  相似文献   

6.
Much effort has been undertaken for the estimation of propulsive force of swimmers in the front crawl. Estimation is typically based on steady flow theory: the so-called quasi-steady analysis. Flow fields around a swimmer, however, are extremely unsteady because the change direction of hand produces unsteady vortex motions. To evaluate the force correctly, it is necessary to know the unsteady properties determined from the vortex dynamics because that unsteadiness is known to make the force greater. Unsteady flow measurements were made for this study using a sophisticated technique called particle image velocimetry (PIV) in several horizontal planes for subjects swimming in a flume. Using that method, a 100 time-sequential flow fields are obtainable simultaneously. Each flow field was calculated from two particle images using the cross-correlation method. The intensity of vortices and their locations were identified. A strong vortex was generated near the hand and then shed by directional change of the hand in the transition phase from in-sweep to out-sweep. When the vortex was shed, a new vortex rotating in the opposite direction around the hand was created. The pair of vortices induced the velocity component in the direction opposite to the swimming. Results of this study show that the momentum change attributable to the increase in this velocity component is the origin of thrust force by the hand.  相似文献   

7.
The wing kinematics of birds vary systematically with body size, but we still, after several decades of research, lack a clear mechanistic understanding of the aerodynamic selection pressures that shape them. Swimming and flying animals have recently been shown to cruise at Strouhal numbers (St) corresponding to a regime of vortex growth and shedding in which the propulsive efficiency of flapping foils peaks (St approximately fA/U, where f is wingbeat frequency, U is cruising speed and A approximately bsin(theta/2) is stroke amplitude, in which b is wingspan and theta is stroke angle). We show that St is a simple and accurate predictor of wingbeat frequency in birds. The Strouhal numbers of cruising birds have converged on the lower end of the range 0.2 < St < 0.4 associated with high propulsive efficiency. Stroke angle scales as theta approximately 67b-0.24, so wingbeat frequency can be predicted as f approximately St.U/bsin(33.5b-0.24), with St0.21 and St0.25 for direct and intermittent fliers, respectively. This simple aerodynamic model predicts wingbeat frequency better than any other relationship proposed to date, explaining 90% of the observed variance in a sample of 60 bird species. Avian wing kinematics therefore appear to have been tuned by natural selection for high aerodynamic efficiency: physical and physiological constraints upon wing kinematics must be reconsidered in this light.  相似文献   

8.
It has been well documented that animals (and machines) swimming or flying near a solid boundary get a boost in performance. This ground effect is often modelled as an interaction between a mirrored pair of vortices represented by a true vortex and an opposite sign ‘virtual vortex’ on the other side of the wall. However, most animals do not swim near solid surfaces and thus near body vortex–vortex interactions in open-water swimmers have been poorly investigated. In this study, we examine the most energetically efficient metazoan swimmer known to date, the jellyfish Aurelia aurita, to elucidate the role that vortex interactions can play in animals that swim away from solid boundaries. We used high-speed video tracking, laser-based digital particle image velocimetry (dPIV) and an algorithm for extracting pressure fields from flow velocity vectors to quantify swimming performance and the effect of near body vortex–vortex interactions. Here, we show that a vortex ring (stopping vortex), created underneath the animal during the previous swim cycle, is critical for increasing propulsive performance. This well-positioned stopping vortex acts in the same way as a virtual vortex during wall-effect performance enhancement, by helping converge fluid at the underside of the propulsive surface and generating significantly higher pressures which result in greater thrust. These findings advocate that jellyfish can generate a wall-effect boost in open water by creating what amounts to a ‘virtual wall’ between two real, opposite sign vortex rings. This explains the significant propulsive advantage jellyfish possess over other metazoans and represents important implications for bio-engineered propulsion systems.  相似文献   

9.
Volumetric imaging of fish locomotion   总被引:1,自引:0,他引:1  
Fishes use multiple flexible fins in order to move and maintain stability in a complex fluid environment. We used a new approach, a volumetric velocimetry imaging system, to provide the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes. This new technology allowed us to demonstrate conclusively the linked ring vortex wake pattern that is produced by the symmetrical (homocercal) tail of fishes, and to visualize for the first time the three-dimensional vortex wake interaction between the dorsal and anal fins and the tail. We found that the dorsal and anal fin wakes were rapidly (within one tail beat) assimilated into the caudal fin vortex wake. These results show that volumetric imaging of biologically generated flow patterns can reveal new features of locomotor dynamics, and provides an avenue for future investigations of the diversity of fish swimming patterns and their hydrodynamic consequences.  相似文献   

10.
Human undulatory underwater swimming (UUS) is an underwater propelling technique in competitive swimming and its propulsive mechanism is poorly understood. The purpose of this study was to visualize the three-dimensional (3D) flow field in the wake region during human UUS in a water flume. A national level male swimmer performed 41 UUS trials in a water flume. A motion capture system and stereo particle image velocimetry (PIV) equipment were used to investigate the 3D coordinates of the swimmer and 3D flow fields in the wake region. After one kick cycle was divided into eight phases, we conducted coordinate transformations and phase averaging method to construct quasi 3D flow fields. At the end of the downward kick, the lower limbs external rotations of the lower limbs were observed, and the feet approached towards each other. A strong downstream flow, i.e. a jet was observed in the wake region during the downward kick, and the paired vortex structure was accompanied by a jet. In the vortex structure, a cluster of vortices and a jet were generated in the wake during the downward kick, and the vortices were subsequently shed from the feet by the rotated leg motion. This suggested that the swimmer gained a thrust by creating vortices around the foot during the downward kick, which collided to form a jet. This paper describes, illustrates, and explains the propulsive mechanism of human UUS.  相似文献   

11.
The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail''s delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail.  相似文献   

12.
Bamboo sharks (Chiloscyllium plagiosum) are primarily benthic and use their relatively flexible pectoral and pelvic fins to rest on and move about the substrate. We examined the morphology of the pectoral fins and investigated their locomotory function to determine if pectoral fin function during both benthic station-holding and pelagic swimming differs from fin function described previously in leopard sharks, Triakis semifasciata. We used three-dimensional kinematics and digital particle image velocimetry (DPIV) to quantify pectoral fin function in five white-spotted bamboo sharks, C. plagiosum, during four behaviors: holding station on the substrate, steady horizontal swimming, and rising and sinking during swimming. During benthic station-holding in current flow, bamboo sharks decrease body angle and adjust pectoral fin angle to shed a clockwise fluid vortex. This vortex generates negative lift more than eight times that produced during open water vertical maneuvering and also results in an upstream flow that pushes against the posterior surface of the pectoral fin to oppose drag. In contrast, there is no evidence of significant lift force in the wake of the pectoral fin during steady horizontal swimming. The pectoral fin is held concave downward and at a negative dihedral angle during steady horizontal swimming, promoting maneuverability rather than stability, although this negative dihedral angle is much less than that observed previously in sturgeon and leopard sharks. During sinking, the pectoral fins are held concave upward and shed a clockwise vortex with a negative lift force, while in rising the pectoral fin is held concave downward and sheds a counterclockwise vortex with a positive lift force. Bamboo sharks appear to sacrifice maneuverability for stability when locomoting in the water column and use their relatively flexible fins to generate strong negative lift forces when holding position on the substrate and to enhance stability when swimming in the water column.  相似文献   

13.
Vorticity control mechanisms for flapping foils play a guiding role in both biomimetic thrust research and modeling the forward locomotion of animals with wings, fins, or tails. In this paper, a thrust-producing flapping lunate tail is studied through force and power measurements in a water channel. Proper vorticity control methods for flapping tails are discussed based on the vorticity control parameters: the dimensionless transverse amplitude, Strouhal number, angle of attack, and phase angle. Field tests are conducted on a free-swimming biomimetic robotic fish that uses a flapping tail. The results show that active control of Strouhal number using fuzzy logic control methods can efficiently reduce power consumption of the robotic fish and high swimming speeds can be obtained. A maximum speed of 1.17 length specific speed is obtained experimentally under conditions of optimal vorticity control. The St of the flapping tail is controlled within the range of 0.4~0.5.  相似文献   

14.
The median fins of fishes consist of the dorsal, anal, and caudal fins and have long been thought to play an important role in generating locomotor force during both steady swimming and maneuvering. But the orientations and magnitudes of these forces, the mechanisms by which they are generated, and how fish modulate median fin forces have remained largely unknown until the recent advent of Digital Particle Image Velocimetry (DPIV) which allows empirical analysis of force magnitude and direction. Experimental hydrodynamic studies of median fin function in fishes are of special utility when conducted in a comparative phylogenetic context, and we have examined fin function in four ray-finned fish clades (sturgeon, trout, sunfish, and mackerel) with the goal of testing classical hypotheses of fin function and evolution. In this paper we summarize two recent technical developments in DPIV methodology, and discuss key recent findings relevant to median fin function. High-resolution DPIV using a recursive local-correlation algorithm allows quantification of small vortices, while stereo-DPIV permits simultaneous measurement of x, y, and z flow velocity components within a single planar light sheet. Analyses of median fin wakes reveal that lateral forces are high relative to thrust force, and that mechanical performance of median fins (i.e., thrust as a proportion of total force) averages 0.35, a surprisingly low value. Large lateral forces which could arise as an unavoidable consequence of thrust generation using an undulatory propulsor may also enhance stability and maneuverability. Analysis of hydrodynamic function of the soft dorsal fin in bluegill sunfish shows that a thrust wake is generated that accounts for 12% of total thrust and that the thrust generation by the caudal fin may be enhanced by interception of the dorsal fin wake. Integration of experimental studies of fin wakes, computational approaches, and mechanical models of fin function promise understanding of instantaneous forces on fish fins during the propulsive cycle as well as exploration of a broader locomotor design space and its hydrodynamic consequences.  相似文献   

15.
In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer, similar to the experimental results. Finally, we show results from a simple physical model of a flapping fin, using fins of different flexural stiffness. When actuated in the same way, fins of different stiffnesses propel themselves at different speeds with different kinematics. Future experimental and computational work will need to consider the mechanisms underlying production of the anguilliform and carangiform swimming modes, because anguilliform swimmers tend to be less stiff, in general, than are carangiform swimmers.  相似文献   

16.
In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.  相似文献   

17.
A form of large-amplitude elongated-body theory appropriate for the analysis of undulatory fins attached to a rigid body of elliptical section suggests a benefit due to momentum enhancement relative to the fins on their own. This theoretical prediction is experimentally confirmed for the first time. Theoretical momentum enhancement factors for Diodon holocanthus (2.2 and 2.7 for the median and pectoral fins, respectively) compared well to inferred thrust values determined from particle-image velocimetry (PIV) wake measurements (2.2-2.4 and 2.7-2.9). Caudal fin mean theoretical thrust was not significantly different from measured (PIV) values (n = 24, P > 0.05), implying no momentum enhancement. Pectoral-fin thrust was half that of the median and caudal fins due to high fin-jet angles, low circulation and momentum. Average total fin thrust and fish drag were not significantly different (n = 24, P > 0.05). Vortex rings generated by the fins were elliptical, with size dependent on fin chord and stroke amplitude. Hydrodynamic advantages (thrust enhancement at no cost to hydrodynamic efficiency, reduction of side forces minimizing energy wasting yawing motions and body drag) are probably common among rigid-bodied organisms propelled by undulatory fins. A trade-off between momentum enhancement and the rate of momentum generation (thrust force) sets a practical limit to the former. For small fins whilst momentum enhancement is high, absolute thrust is low. In addition, previously suggested limitations on thrust enhancement set by reductions in propulsive force associated with progressive reductions in fin wavelength are found to be biologically unrealistic.  相似文献   

18.
Lagrangian Coherent Structures (LCS) of tandem wings hovering in an inclined stroke plane is studied using ImmersedBoundary Method (IBM) by solving two dimensional (2D) incompressible Navier-Stokes equations.Coherent structures responsible for the force variation are visualized by calculating Finite Time Lyapunov Exponents (FTLE),and vorticity contours.LCS is effective in determining the vortex boundaries,flow separation,and the wing-vortex interactions accurately.The effects of inter-wing distance and phase difference on the force generation are studied.Results show that in-phase stroking generates maximum vertical force and counter-stroking generates the least vertical force.In-phase stroking generates a wake with swirl,and counter stroking generates a wake with predominant vertical velocity.Counter stroking aids the stability of the body in hovering.As the hindwing operates in the wake of the forewing,due to the reduction in the effective Angle of Attack (AoA),the hindwing generates lesser force than that of a single flapping wing.  相似文献   

19.
The propulsion system of animals that fly or swim are quite different from each other in their morphology and function, yet the propulsive efficiency could be maximized by a surprising similarity in the fine tuning of flapping frequency, amplitude and forward speed, according to a new study by Taylor et al. This conclusion was based on an analysis of the Strouhal number, which is a dynamic similarity index relevant to propulsion that relies on vortex shedding for thrust generation. Such fine-tuning of the propulsive system suggests possible consequences for physiological and ecological adaptations related to, for example muscle operating frequency and optimal speed of muscle contraction.  相似文献   

20.
Over the past century, many ideas have been developed on the relationships between water flow and the structure and shape of the body and fins of fishes, largely during swimming in relatively steady flows. However, both swimming by fishes and the habitats they occupy are associated with vorticity, typically concentrated as eddies characteristic of turbulent flow. Deployment of methods to examine flow in detail suggests that vorticity impacts the lives of fishes. First, vorticity near the body and fins can increase thrust and smooth variations in thrust that are a consequence of using oscillating and undulating propulsors to swim. Second, substantial mechanical energy is dissipated in eddies in the wake and adaptations that minimize these losses would be anticipated. We suggest that such mechanisms may be found in varying the length of the propulsive wave, stiffening propulsive surfaces, and shifting to using median and paired fins when swimming at low speeds. Eddies in the flow encountered by fishes may be beneficial, but when eddy radii are of the order of 0.25 of the fish's total length, negative impacts occur due to greater difficulties in controlling stability. The archetypal streamlined "fish" shape reduces destabilizing forces for fishes swimming into eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号