首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. A method is described for the preparation and titration of prothrombin and thrombin. 2. Confirming the views of Morawitz, Howell (1916–17, 1925), and Bordet, thrombin cannot be regarded as an artificial by-product of coagulation (Wooldridge, Nolf (both quoted from Morawitz)). Calcium, a platelet factor, and a plasma factor (prothrombin) interact to form thrombin, and this then acts upon fibrinogen to form fibrin. The amount and rate of thrombin formation in the first reaction are independent of the presence or absence of fibrinogen. After a variable latent period, thrombin suddenly appears in large quantities, coincident with or immediately preceding the deposition of fibrin if fibrinogen is present. 3. The amount of thrombin formed in a mixture of prothrombin, Ca and platelets is independent of the platelet or Ca concentration, and depends primarily upon the amount of prothrombin used. The platelets (or cephalin) enormously accelerate the transformation of prothrombin to thrombin, and this acceleration seems to be their physiological rôle in the coagulation process. 4. Contrary to previous reports, platelets have not been demonstrated to contain significant quantities of prothrombin. 5. The available data do not allow any definite decision as to whether the platelet factor actually combines with prothrombin to form thrombin, or merely catalyzes the transformation. The very slow formation of thrombin in the complete absence of platelets may be due to dissolved traces of platelet material released during the physical manipulation of the plasma (centrifuging, Berkefeld filtration). 6. There was no evidence for a species-specific activity of platelets in the transformation of prothrombin to thrombin.  相似文献   

2.
Seventy-three consecutive patients with a Q wave in Lead III and aVF in the electrocardiogram were studied. Vectorcardiograms were recorded with the use of the Frank system.In 32 cases the ECG''s were compatible with the diagnosis of an inferior myocardial infarction based on a Q wave in Lead III and/or aVF greater than 0.04 second duration and greater than 25 per cent of the amplitude of the R wave. In this group, there were 16 patients with coronary disease and the VCG confirmed the electrocardiographic diagnosis of an infarction in 14 cases. In 13 of the other 16 cases without history of coronary disease the VCG did not suggest the presence of an infarction.In all 17 cases with questionable electrocardiographic diagnosis of an inferior infarction, and without history of coronary disease, the VCG denied the presence of an infarction. In 18 cases with small Q III or Q aVF the VCG''s were within normal limits. In two cases with normal Q III and Q aVF the VCG''s did not detect the presence of an infarction in both cases.The vectorcardiographic diagnosis of an inferior myocardial infarction was based on the superior orientation (at or above 360 degrees) of the 10, 20, 25 and 30-msec vectors in the frontal plane, superior displacement of the maximum QRS vector and clockwise rotation. In the left sagittal plane the 10, 20, 25 and 30-msec vectors were oriented at or above 180 degrees with the loop rotating counterclockwise.The data presented suggest that vectorcardiography is a useful adjunct to electrocardiography in the diagnosis of an inferior myocardial infarction.  相似文献   

3.
4.
γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme''s tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.  相似文献   

5.
DNA polymerase δ (Pol δ4) is a heterotetrameric enzyme, whose p12 subunit is degraded in response to DNA damage, leaving behind a trimer (Pol δ3) with altered enzymatic characteristics that participate in gap filling during DNA repair. We demonstrate that CRL4Cdt2, a key regulator of cell cycle progression that targets replication licensing factors, also targets the p12 subunit of Pol δ4 in response to DNA damage and on entry into S phase. Evidence for the involvement of CRL4Cdt2 included demonstration that p12 possesses a proliferating cell nuclear antigen-interacting protein-degron (PIP-degron) and that knockdown of the components of the CRL4Cdt2 complex inhibited the degradation of p12 in response to DNA damage. Analysis of p12 levels in synchronized cell populations showed that p12 is partially degraded in S phase and that this is affected by knockdowns of CUL4A or CUL4B. Laser scanning cytometry of overexpressed wild type p12 and a mutant resistant to degradation showed that the reduction in p12 levels during S phase was prevented by mutation of p12. Thus, CRL4Cdt2 also regulates the subunit composition of Pol δ during the cell cycle. These studies reveal a novel function of CRL4Cdt2, i.e. the direct regulation of DNA polymerase δ, adding to its known functions in the regulation of the licensing of replication origins and expanding the scope of its overall control of DNA replication. The formation of Pol δ3 in S phase as a normal aspect of cell cycle progression leads to the novel implications that it is involved in DNA replication as well as DNA repair.  相似文献   

6.
Bak and Bax are the essential effectors of the intrinsic pathway of apoptosis. Following an apoptotic stimulus, both undergo significant changes in conformation that facilitates their self-association to form pores in the mitochondrial outer membrane. However, the molecular structures of Bak and Bax oligomeric pores remain elusive. To characterize how Bak forms pores during apoptosis, we investigated its oligomerization under native conditions using blue native PAGE. We report that, in a healthy cell, inactive Bak is either monomeric or in a large complex involving VDAC2. Following an apoptotic stimulus, activated Bak forms BH3:groove homodimers that represent the basic stable oligomeric unit. These dimers multimerize to higher-order oligomers via a labile interface independent of both the BH3 domain and groove. Linkage of the α6:α6 interface is sufficient to stabilize higher-order Bak oligomers on native PAGE, suggesting an important role in the Bak oligomeric pore. Mutagenesis of the α6 helix disrupted apoptotic function because a chimera of Bak with the α6 derived from Bcl-2 could be activated by truncated Bid (tBid) and could form BH3:groove homodimers but could not form high molecular weight oligomers or mediate cell death. An α6 peptide could block Bak function but did so upstream of dimerization, potentially implicating α6 as a site for activation by BH3-only proteins. Our examination of native Bak oligomers indicates that the Bak apoptotic pore forms by the multimerization of BH3:groove homodimers and reveals that Bak α6 is not only important for Bak oligomerization and function but may also be involved in how Bak is activated by BH3-only proteins.  相似文献   

7.
8.
Defensins are components of the innate immune system that promote the directional migration and activation of dendritic cells, thereby modulating the adaptive immune response. Because matrix glycosaminoglycan (GAG) is known to be important for these functions, we characterized the structural features of human β-defensin 6 (hBD6) and GAG interaction using a combination of structural and in silico analyses. Our results showed that GAG model compounds, a pentasaccharide (fondaparinux, FX) and an octasaccharide heparin derivative (dp8) bind to the α-helix and in the loops between the β2 and β3 strands, inducing the formation of a ternary complex with a 2:1 hBD6:FX stoichiometry. Competition experiments indicated an overlap of GAG and chemokine receptor CCR2 binding sites. An NMR-derived model of the ternary complex revealed that FX interacts with hBD6 along the dimerization interface, primarily contacting the α-helices and β2-β3 loops from each monomer. We further demonstrated that high-pressure NMR spectroscopy could capture an intermediate stage of hBD6-FX interaction, exhibiting features of a cooperative binding mechanism. Collectively, these data suggest a “sandwich-like” model in which two hBD6 molecules bind a single FX chain and provide novel structural insights into how defensin orchestrates leukocyte recruitment through GAG binding and G protein-coupled receptor activation. Despite the similarity to chemokines and hBD2, our data indicate different properties for the hBD6-GAG complex. This work adds significant information to the currently limited data available for the molecular structures and dynamics of defensin carbohydrate binding.  相似文献   

9.
《Life sciences》1997,61(26):PL409-PL415
Endomorphin 1 and endomorphin 2 are newly-discovered endogenous ligands for the μ-opioid receptor. In the present study, responses to intra-arterial injections of endomorphin 1 and 2 were investigated in the hindquarters vascular bed of the rat. Under constant-flow conditions, endomorphin 1 and 2 induced dose-dependent decreases in hindquarters perfusion pressure when injected in doses of 3–100 nmol into the hindquarters perfusion circuit. Vasodilator responses to endomorphin 1 and 2 and met-enkephalin were attenuated by the opioid receptor antagonist naloxone (2 mg/kg i.v.) at a time when vasodilator responses to isoproterenol were not altered. In terms of relative vasodilator activity, endomorphin 1 and 2 were similar to ATP, 100-fold less potent than isoproterneol, and 10,000-fold less potent than acetylcholine. These data demonstrate that endomorphin 1 and 2 have significant naloxone-sensitive vasodilator activity in the hindquarters vascular bed of the rat. © 1997 Elsevier Science Inc.  相似文献   

10.
11.
Previously we showed that the inactive form of p90 ribosomal S6 kinase 1 (RSK1) interacts with the regulatory subunit, PKARIα, of protein kinase A (PKA), whereas the active RSK1 interacts with the catalytic subunit (PKAc) of PKA. Herein, we demonstrate that the N-terminal kinase domain (NTK) of RSK1 is necessary for interactions with PKARIα. Substitution of the activation loop phosphorylation site (Ser-221) in the NTK with the negatively charged Asp residue abrogated the association between RSK1 and PKARIα. This explains the lack of an interaction between active RSK1 and PKARIα. Full-length RSK1 bound to PKARIα with an affinity of 0.8 nm. The NTK domain of RSK1 competed with PKAc for binding to the pseudosubstrate region (amino acids 93–99) of PKARIα. Overexpressed RSK1 dissociated PKAc from PKARIα, increasing PKAc activity, whereas silencing of RSK1 increased PKAc/PKARIα interactions and decreased PKAc activity. Unlike PKAc, which requires Arg-95 and -96 in the pseudosubstrate region of PKARIα for their interactions, RSK1/PKARIα association requires all four Arg residues (Arg-93–96) in the pseudosubstrate site of PKARIα. A peptide (Wt-PS) corresponding to residues 91–99 of PKARIα competed for binding of RSK1 with PKARIα both in vitro and in intact cells. Furthermore, peptide Wt-PS (but not control peptide Mut-PS), by dissociating RSK1 from PKARIα, activated RSK1 in the absence of any growth factors and protected cells from apoptosis. Thus, by competing for binding to the pseudosubstrate region of PKARIα, RSK1 regulates PKAc activity in a cAMP-independent manner, and PKARIα by associating with RSK1 regulates its activation and its biological functions.  相似文献   

12.
Plasmid R6K, which contains 3 replication origins called α, γ, and β, is a favorable system to investigate the molecular mechanism(s) of action at a distance, i.e. replication initiation at a considerable distance from the primary initiator protein binding sites (iterons). The centrally located γ origin contains 7 iterons that bind to the plasmid-encoded initiator protein, π. Ori α, located at a distance of ∼4 kb from γ, contains a single iteron that does not directly bind to π but is believed to access the protein by π-mediated α-γ iteron-iteron interaction that loops out the intervening ∼3.7 kb of DNA. Although the cis-acting components and the trans-acting proteins required for ori γ function have been analyzed in detail, such information was lacking for ori α. Here, we have identified both the sequence elements located at α and those at γ, that together promoted α activity. The data support the conclusion that besides the single iteron, a neighboring DNA primase recognition element called G site is essential for α-directed plasmid maintenance. Sequences preceding the iteron and immediately following the G site, although not absolutely necessary, appear to play a role in efficient plasmid maintenance. In addition, while both dnaA1 and dnaA2 boxes that bind to DnaA protein and are located at γ were essential for α activity, only dnaA2 was required for initiation at γ. Mutations in the AT-rich region of γ also abolished α function. These results are consistent with the interpretation that a protein-DNA complex consisting of π and DnaA forms at γ and activates α at a distance by DNA looping.  相似文献   

13.
The role of “sphingolipid rheostat” by ceramide and sphingosine 1-phosphate (S1P) in the regulation of autophagy remains unclear. In human leukemia HL-60 cells, amino acid deprivation (AA(−)) caused autophagy with an increase in acid sphingomyleinase (SMase) activity and ceramide, which serves as an autophagy inducing lipid. Knockdown of acid SMase significantly suppressed the autophagy induction. S1P treatment counteracted autophagy induction by AA(−) or C2-ceramide. AA(−) treatment promoted mammalian target of rapamycin (mTOR) dephosphorylation/inactivation, inducing autophagy. S1P treatment suppressed mTOR inactivation and autophagy induction by AA(−). S1P exerts biological actions via cell surface receptors, and S1P3 among five S1P receptors was predominantly expressed in HL-60 cells. We evaluated the involvement of S1P3 in suppressing autophagy induction. S1P treatment of CHO cells had no effects on mTOR inactivation and autophagy induction by AA(−) or C2-ceramide. Whereas S1P treatment of S1P3 overexpressing CHO cells resulted in activation of the mTOR pathway, preventing cells from undergoing autophagy induced by AA(−) or C2-ceramide. These results indicate that S1P-S1P3 plays a role in counteracting ceramide signals that mediate mTOR-controlled autophagy. In addition, we evaluated the involvement of ceramide-activated protein phosphatases (CAPPs) in ceramide-dependent inactivation of the mTOR pathway. Inhibition of CAPP by okadaic acid in AA(−)- or C2-ceramide-treated cells suppressed dephosphorylation/inactivation of mTOR, autophagy induction, and autophagy-associated cell death, indicating a novel role of ceramide-CAPPs in autophagy induction. Moreover, S1P3 engagement by S1P counteracted cell death. Taken together, these results indicated that sphingolipid rheostat in ceramide-CAPPs and S1P-S1P3 signaling modulates autophagy and its associated cell death through regulation of the mTOR pathway.  相似文献   

14.
I. Plasmalemma. 1. Of the salts used in these experiments the anions have only a modifying effect on the cations. The dispersive action of Na and, to a lesser extent, of K, predominates. Borate increases the toxicity of Na and acetate decreases it. 2. CO2 and carbonates dissolve the plasmalemma readily. 3. Na lactate tends to dissolve the surface especially when brought into contact with it from the interior by injection. Lactate antagonizes the stimulating effect of Ca on the plasmalemma. II. The Internal Protoplasm. 4. Acid phosphate of Na and K, when injected, causes a membrane to form around the granular endoplasm within the ameba. 5. Na borate increases the toxicity of Na inside the cell. 6. Bubbles of CO2, injected into the cell, cause an increase of fluidity of the internal protoplasm. These bubbles shrink and disappear from the cell more readily than air bubbles. 7. The anions modify the typical cation effect. Carbonates accentuate the liquefying and solvent action of Na. Phosphates prevent a complete rounding of the ameba caused by Na. Lactate inhibits the solidification and pinching off effect caused by Ca. III. Physiological Significance of Salts. 8. The buffer salts can be injected in high concentrations without toxic effects but amebæ can be immersed in them only in very dilute solutions without injury. 9. The inhibiting action of lactate and the dispersive effect of CO2, carbonates, and lactate on the plasma membrane, must be of importance in a consideration of the functions of the organism and perhaps in the production of pathological changes.  相似文献   

15.
16.
Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, 163DVD165 and 221FWGWGREDDE230, are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp224 as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp228 acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics.  相似文献   

17.
To better understand influenza virus infection of pigs, we examined primary swine respiratory epithelial cells (SRECs, the primary target cells of influenza viruses in vivo), as a model system. Glycomic profiling of SRECs by mass spectrometry revealed a diverse range of glycans terminating in sialic acid or GalαGal. In terms of sialylation, α2–6 linkage was more abundant than α2–3, and NeuAc was more abundant than NeuGc. Virus binding and infection experiments were conducted to determine functionally important glycans for influenza virus infection, with a focus on recently emerged swine viruses. Infection of SRECs with swine and human viruses resulted in different infectivity levels. Glycan microarray analysis with a high infectivity “triple reassortant” virus ((A/Swine/MN/593/99 (H3N2)) that spread widely throughout the North American swine population and a lower infectivity human virus isolated from a single pig (A/Swine/ONT/00130/97 (H3N2)) showed that both viruses bound exclusively to glycans containing NeuAcα2–6, with strong binding to sialylated polylactosamine and sialylated N-glycans. Treatment with mannosamine precursors of sialic acid (to alter NeuAc/NeuGc abundances) and linkage-specific sialidases prior to infection indicated that the influenza viruses tested preferentially utilize NeuAcα2–6-sialylated glycans to infect SRECs. Our data indicate that NeuAcα2–6-terminated polylactosamine and sialylated N-glycans are important determinants for influenza viruses to infect SRECs. As NeuAcα2–6 polylactosamine glycans play major roles in human virus infection, the importance of these receptor components in virus infection of swine cells has implications for transmission of viruses between humans and pigs and for pigs as possible adaptation hosts of novel human influenza viruses.  相似文献   

18.
19.
Protein phosphatase (PP) 2A is a heterotrimeric enzyme regulated by specific subunits. The B56 (or B′/PR61/PPP2R5) class of B-subunits direct PP2A or its substrates to different cellular locations, and the B56α, -β, and -ϵ isoforms are known to localize primarily in the cytoplasm. Here we studied the pathways that regulate B56α subcellular localization. We detected B56α in the cytoplasm and nucleus, and at the nuclear envelope and centrosomes, and show that cytoplasmic localization is dependent on CRM1-mediated nuclear export. The inactivation of CRM1 by leptomycin B or by siRNA knockdown caused nuclear accumulation of ectopic and endogenous B56α. Conversely, CRM1 overexpression shifted B56α to the cytoplasm. We identified a functional nuclear export signal at the C terminus (NES; amino acids 451–469), and site-directed mutagenesis of the NES (L461A) caused nuclear retention of full-length B56α. Active NESs were identified at similar positions in the cytoplasmic B56-β and ϵ isoforms, but not in the nuclear-localized B56-δ or γ isoforms. The transient expression of B56α induced nuclear export of the PP2A catalytic (C) subunit, and this was blocked by the L461A NES mutation. In addition, B56α co-located with the PP2A active (A) subunit at centrosomes, and its centrosome targeting involved sequences that bind to the A-subunit. Fluorescence Recovery after Photobleaching (FRAP) assays revealed dynamic and immobile pools of B56α-GFP, which was rapidly exported from the nucleus and subject to retention at centrosomes. We propose that B56α can act as a PP2A C-subunit chaperone and regulates PP2A activity at diverse subcellular locations.  相似文献   

20.
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ϵ, which partially inserts into the enzyme''s central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ϵ binding and dissociation, we show that formation of the extended, inhibitory conformation of ϵ (ϵX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the ϵX state, and post-hydrolysis conditions stabilize it. We also show that ϵ inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ϵ is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ϵ N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ϵ suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号