首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap‐binding protein that binds the 5′ cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap‐dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin‐related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E‐dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.  相似文献   

2.
M Altmann  N Schmitz  C Berset    H Trachsel 《The EMBO journal》1997,16(5):1114-1121
In the yeast Saccharomyces cerevisiae a small protein named p20 is found associated with translation initiation factor eIF4E, the mRNA cap-binding protein. We demonstrate here that p20 is a repressor of cap-dependent translation initiation. p20 shows amino acid sequence homology to a region of eIF4G, the large subunit of the cap-binding protein complex eIF4F, which carries the binding site for eIF4E. Both, eIF4G and p20 bind to eIF4E and compete with each other for binding to eIF4E. The eIF4E-p20 complex can bind to the cap structure and inhibit cap-dependent but not cap-independent translation initiation: the translation of a mRNA with the 67 nucleotide omega sequence of tobacco mosaic virus in its 5' untranslated region (which was previously shown to render translation cap-independent) is not inhibited by p20. Whereas the translation of the same mRNA lacking the omega sequence is strongly inhibited by p20. Disruption of CAF20, the gene encoding p20, stimulates the growth of yeast cells, overexpression of p20 causes slower growth of yeast cells. These results show that p20 is a regulator of eIF4E activity which represses cap-dependent initiation of translation by interfering with the interaction of eIF4E with eIF4G, e.g. the formation of the eIF4F-complex.  相似文献   

3.
Abstract In multiple human cancers, the function of the eukaryotic translation initiation factor 4E (eIF4E) is elevated and directly related to disease progression. Overexpression or hyperactivation of eIF4E in experimental models can drive cellular transformation and malignant progression. Elevated eIF4E function triggers enhanced assembly of the eIF4F translation initiation complex and thereby drives cap-dependent translation. Though all capped mRNAs require eIF4F for translation, a pool of mRNAs are exceptionally dependent on elevated eIF4F activity for translation and are thereby selectively and disproportionately affected by altered eIF4F activity. These mRNAs encode proteins that play significant roles in all aspects of malignancy including angiogenesis factors (VEGF, FGF-2), onco-proteins (c-myc, cyclin D1, ODC), pro-survival proteins (survivin, BCL-2) and proteins involved in tumor invasion and metastasis (MMP-9, heparanase). Recent advances in targeting the eIF4F complex have highlighted the role for this complex in tumor cell survival and angiogenesis and have illuminated the enhanced susceptibility of the tumor cells to inhibition of the eIF4F complex. These studies have demonstrated the attractiveness and plausibility of targeting eIF4E and the eIF4F translation initiation complex for cancer therapy and have prompted the advance of the first eIF4E-specific therapy to the clinic.  相似文献   

4.
Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.  相似文献   

5.
In eukaryotic cells, protein synthesis is a complex and multi-step process that has several mechanisms to start the translation including cap-dependent and cap-independent initiation. The translation control of eukaryotic gene expression occurs principally at the initiation step. In this context, it is critical that the eukaryotic translation initiation factor eIF4E bind to the 7-methylguanosine (m7G) cap present at the 5′-UTRs of most eukaryotic mRNAs. Combined with other initiation factors, eIF4E mediates the mRNA recruitment on ribosomes to start the translation. Moreover, the eIF4E nuclear bodies are involved in the export of specific mRNAs from the nucleus to the cytoplasm. In this review, we focus on the eIF4E structure and its physiological functions, and describe the role of eIF4E in cancer development and progression and the current therapeutic strategies to target eIF4E.  相似文献   

6.
7.
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.  相似文献   

8.
Was the initiation of translation in early eukaryotes IRES-driven?   总被引:1,自引:0,他引:1  
The initiation of translation in eukaryotes generally involves the recognition of a 'cap' structure at the 5' end of the mRNA. However, for some viral and cellular mRNAs, a cap-independent mechanism occurs through an mRNA structure known as the internal ribosome entry site (IRES). Here, I postulate that the first eukaryotic mRNAs were translated in a cap-independent, IRES-driven manner that was then superseded in evolution by the cap-dependent mechanism, rather than vice versa. This hypothesis is supported by the following observations: (i) IRES-dependent, but not cap-dependent, translation can take place in the absence of not only a cap, but also many initiation factors; (ii) eukaryotic initiation factor 4E (eIF4E) and eIF4G, molecules absolutely required for cap-dependent translation, are among the most recently evolved translation factors; and (iii) functional similarities suggest the evolution of IRESs from spliceosomal introns. Thus, the contemporary cellular IRESs might be relics of the past.  相似文献   

9.
The eukaryotic translation initiation factor 4F (eIF4F) consists of three polypeptides (eIF4A, eIF4G, and eIF4E) and is responsible for recruiting ribosomes to mRNA. eIF4E recognizes the mRNA 5'-cap structure (m7GpppN) and plays a pivotal role in control of translation initiation, which is the rate-limiting step in translation. Overexpression of eIF4E has a dramatic effect on cell growth and leads to oncogenic transformation. Therefore, an inhibitory agent to eIF4E, if any, might serve as a novel therapeutic against malignancies that are caused by aberrant translational control. Along these lines, we developed two RNA aptamers, aptamer 1 and aptamer 2, with high affinity for mammalian eIF4E by in vitro RNA selection-amplification. Aptamer 1 inhibits the cap binding to eIF4E more efficiently than the cap analog m7GpppN or aptamer 2. Consistently, aptamer 1 inhibits specifically cap-dependent in vitro translation while it does not inhibit cap-independent HCV IRES-directed translation initiation. The interaction between eIF4E and eIF4E-binding protein 1 (4E-BP1), however, was not inhibited by aptamer 1. Aptamer 1 is composed of 86 nucleotides, and the high affinity to eIF4E is affected by deletions at both termini. Moreover, relatively large areas in the aptamer 1 fold are protected by eIF4E as determined by ribonuclease footprinting. These findings indicate that aptamers can achieve high affinity to a specific target protein via global conformational recognition. The genetic mutation and affinity study of variant eIF4E proteins suggests that aptamer 1 binds to eIF4E adjacent to the entrance of the cap-binding slot and blocks the cap-binding pocket, thereby inhibiting translation initiation.  相似文献   

10.
Cap-dependent ribosome recruitment to eukaryotic mRNAs during translation initiation is stimulated by the eukaryotic initiation factor (eIF) 4F complex and eIF4B. eIF4F is a heterotrimeric complex composed of three subunits: eIF4E, a 7-methyl guanosine cap binding protein; eIF4A, a DEAD-box RNA helicase; and eIF4G. The interactions of eIF4E, eIF4A, and eIF4B with mRNA have previously been monitored by chemical- and UV-based cross-linking approaches aimed at characterizing the initial protein/mRNA interactions that lead to ribosome recruitment. These studies have led to a model whereby eIF4E interacts with the 7-methyl guanosine cap structure in an ATP-independent manner, followed by an ATP-dependent interaction of eIF4A and eIF4B. Herein, we apply a splint-ligation-mediated approach to generate 4-thiouridine-containing mRNA adjacent to a radiolabel group that we utilize to monitor cap-dependent cross-linking of proteins adjacent to, and downstream from, the cap structure. Using this approach, we demonstrate interactions between eIF4G, eIF4H, and eIF3 subunits with the mRNA during the cap recognition process.  相似文献   

11.
12.
To investigate the mechanisms underlying regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation in Aplysia neurons, we have cloned the Aplysia homolog of the vertebrate eIF4E kinases, Mnk1 and -2. Aplysia Mnk shares many conserved regions with vertebrate Mnk, including putative eukaryotic initiation factor 4G binding regions, activation loop phosphorylation sites, and a carboxy-terminal anchoring site for MAP kinases. As expected, purified Aplysia Mnk phosphorylated Aplysia eIF4E at a conserved carboxy-terminal serine and over-expression of Aplysia Mnk in sensory neurons led to increased phosphorylation of endogenous eIF4E. Over-expression of Aplysia Mnk led to strong decreases in cap-dependent translation, while generally sparing internal ribosomal entry site (IRES)-dependent translation. However, decreases in cap-dependent translation seen after expression of Aplysia Mnk could only be partly explained by increases in eIF4E phosphorylation. In Aplysia sensory neurons, phosphorylation of eIF4E is reduced during intermediate memory formation. However, we found that this physiological regulation of eIF4E phosphorylation was independent of changes in Aplysia Mnk phosphorylation. We propose that changes in eIF4E phosphorylation in Aplysia neurons are a consequence of changes in cap-dependent translation that are independent of regulation of Aplysia Mnk.  相似文献   

13.
Translation initiation in eukaryotes is facilitated by the cap structure, m7GpppN (where N is any nucleotide). Eukaryotic translation initiation factor 4F (eIF4F) is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. eIF4G interacts directly with eIF4E and eIF4A. The binding site of eIF4E resides in the N-terminal third of eIF4G, while eIF4A and eIF3 binding sites are present in the C-terminal two-thirds. Here, we describe a new eukaryotic translational regulator (hereafter called p97) which exhibits 28% identity to the C-terminal two-thirds of eIF4G. p97 mRNA has no initiator AUG and translation starts exclusively at a GUG codon. The GUG-initiated open reading frame (907 amino acids) has no canonical eIF4E binding site. p97 binds to eIF4A and eIF3, but not to eIF4E. Transient transfection experiments show that p97 suppresses both cap-dependent and independent translation, while eIF4G supports both translation pathways. Furthermore, inducible expression of p97 reduces overall protein synthesis. These results suggest that p97 functions as a general repressor of translation by forming translationally inactive complexes that include eIF4A and eIF3, but exclude eIF4E.  相似文献   

14.
The interaction between turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) and Arabidopsis thaliana eukaryotic initiation factor (iso)4E (eIF(iso)4E) was investigated to address the influence of potyviral VPg on host cellular translational initiation. Affinity chromatographic analysis showed that the region comprising amino acids 62-70 of VPg is important for the interaction with eIF(iso)4E. In vitro translation analysis showed that the addition of VPg significantly inhibited translation of capped RNA in eIF(iso)4E-reconstituted wheat germ extract. This result indicates that VPg inhibits cap-dependent translational initiation via binding to eIF(iso)4E. The inhibition by VPg of in vitro translation of RNA with wheat germ extract did not depend on RNase activity. Our present results may indicate that excess VPg produced at the encapsidation stage shuts off cap-dependent translational initiation in host cells by inhibiting complex formation between eIF(iso)4E and cellular mRNAs.  相似文献   

15.
The eukaryotic initiation factor eIF4E binds the mRNA 5' cap structure and has a central role during translational initiation. eIF4E and the mechanisms to control its activity have oncogenic properties and thus have become targets for anticancer drug development. A recent study (Kentsis et al. 2004) presented evidence that the antiviral nucleoside ribavirin and its phosphorylated derivatives were structural mimics of the mRNA cap, high-affinity ligands for eIF4E, and potent repressors of eIF4E-mediated cell transformation and tumor growth. Based on these findings, we tested ribavirin, ribavirin triphosphate (RTP), and the dinucleotide RpppG for their ability to inhibit translation in vitro. Surprisingly, the ribavirin-based compounds did not affect translation at concentrations where canonical cap analogs efficiently block cap-dependent translation. Using a set of reporter mRNAs that are translated via either cap-dependent or viral internal ribosome entry sites (IRES)-dependent initiation, we found that these ribavirin-containing compounds did inhibit translation at high (millimolar) concentrations, but there was no correlation of this inhibition with an eIF4E requirement for translation. The addition of a ribavirin-containing cap to mRNA did not stimulate translation. Fluorescence titration experiments with eIF4E and the nuclear cap-binding complex CBC indicated affinities for RTP and RpppG that were two to four orders of magnitude lower than those of m(7)GTP and m(7)GpppG. We conclude that, at least with respect to translation, ribavirin does not act in vitro as a functional mimic of the mRNA cap.  相似文献   

16.
Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation.  相似文献   

17.
Initiation is the rate-limiting step during mRNA 5′ cap-dependent translation, and thus a target of a strict control in the eukaryotic cell. It is shown here by analytical ultracentrifugation and fluorescence spectroscopy that the affinity of the human translation inhibitor, eIF4E-binding protein (4E-BP1), to the translation initiation factor 4E is significantly higher when eIF4E is bound to the cap. The 4E-BP1 binding stabilizes the active eIF4E conformation and, on the other hand, can facilitate dissociation of eIF4E from the cap. These findings reveal the particular allosteric effects forming a thermodynamic cycle for the cooperative regulation of the translation initiation inhibition.  相似文献   

18.
Regulation of mRNA translation is an important regulatory step in gene expression. During embryonic development, mRNA translation is tightly regulated to produce the protein at the right place, at the right time. The eukaryotic initiation factor 4E (eIF4E) is a major target for the regulation of cap-dependent translation, that plays a key role during embryogenesis including gametogenesis, fertilization and establishment of embryonic axes. In this review, we describe recent advances illustrating the importance of the translational regulator eIF4E and its partners in developmental decisions. double dagger.  相似文献   

19.
20.
The eukaryotic initiation factor 4G (eIF4G) is the core of a multicomponent switch controlling gene expression at the level of translation initiation. It interacts with the small ribosomal subunit interacting protein, eIF3, and the eIF4E/cap-mRNA complex in order to load the ribosome onto mRNA during cap-dependent translation. We describe the solution structure of the complex between yeast eIF4E/cap and eIF4G (393-490). Binding triggers a coupled folding transition of eIF4G (393-490) and the eIF4E N terminus resulting in a molecular bracelet whereby eIF4G (393-490) forms a right-handed helical ring that wraps around the N terminus of eIF4E. Cofolding allosterically enhances association of eIF4E with the cap and is required for maintenance of optimal growth and polysome distributions in vivo. Our data explain how mRNA, eIF4E, and eIF4G exists as a stable mRNP that may facilitate multiple rounds of ribosomal loading during translation initiation, a key determinant in the overall rate of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号