首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.

Background

Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary.

Methods

Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated.

Results

Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment.

Conclusion

BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.  相似文献   

4.
The fertilisability and developmental capacity of mouse oocytes matured in vitro were examined by in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). While more than 50% of cumulus-enclosed oocytes were fertilised by IVF after maturation in serum-supplemented medium, none were fertilised when the oocytes matured without serum. By ICSI, the majority (78-94%) of the oocytes were fertilised regardless of the presence or absence of serum in oocyte maturation media. Although the majority (88-92%) of cumulus-free germinal vesicle oocytes underwent nuclear maturation in both serum-free and serum-containing media, those matured in the presence of serum were more readily fertilised by ICSI (43%) than those matured without it (3-5%). The cumulus-free oocytes co-cultured with cumulus cells but without serum were fertilised at 36%, suggesting some secreted factor promotes the oocyte's cytoplasmic maturation. The oocytes fertilised by ICSI developed into normal-term fetuses regardless of the presence or absence of serum or cumulus cells in oocyte maturation medium. These results lead us to conclude that (a) the cytoplasm of the oocytes can mature in serum-free medium and (b) the presence of both the serum and the cumulus cells in the medium surrounding maturing oocytes is beneficial for the development of the fertilisation- and development-competence of oocyte cytoplasm.  相似文献   

5.

Background

Accidental exposure of oocyte/cumulus complex to endometriotic fluid is not uncommon during oocyte retrieval. Only two studies were available on this subject and they gave conflicting results. In this study, we used a mouse model to evaluate the effect of controlled exposure of oocytes to ovarian endometriotic fluid.

Methods

Mouse oocytes/cumulus complexes (n?=?862) were divided into 4 groups, and were exposed to endometriotic fluid (group 1), pooled sera from subjects without endometrioma (group 2), phosphate-buffered saline (group 3), and fertilization medium (controls). After five minutes, oocytes were washed and inseminated. Embryo development was observed daily. The quality of hatching blastocysts was assessed by counting the number of inner cell mass (ICM) and trophectoderm (TE) cells.

Results

The fertilization, cleavage and blastocyst formation rates in the four groups were not statistically different. The proportions of hatching/hatched blastocysts from fertilized oocytes in groups 1 and 2 were significantly lower than those in group 3 and controls (P?=?0.015). Hatching blastocysts from all groups showed no significant difference in the number of ICM and TE cells.

Conclusions

Exposure of mouse oocytes/cumulus complexes to endometriotic fluid had subtle detrimental effects on subsequent blastocyst development. However, one should be cautious in projecting the results of this study to contaminated human oocytes in a clinical setting.  相似文献   

6.
Intracytoplasmic sperm injection (ICSI), an important method used to treat male subfertility, is applied in the transgenic technology of sperm-mediated gene transfer. However, no study has described successful generation of offspring using ICSI in the common marmoset, a small non-human primate used as a model for biomedical translational research. In this study, we investigated blastocyst development and the subsequent live offspring stages of marmoset oocytes matured in vitro and fertilized by ICSI. To investigate the optimal timing of performing ICSI, corrected immature oocytes were matured in vitro and ICSI was performed at various time points (1–2 h, 2–4 h, 4–6 h, 6–8 h, and 8–10 h after extrusion of the first polar body (PB)). Matured oocytes were then divided randomly into two groups: one was used for in vitro fertilization (IVF) and the other for ICSI. To investigate in vivo development of embryos followed by ICSI, 6-cell- to 8-cell-stage embryos and blastocysts were nonsurgically transferred into recipient marmosets. Although no significant differences were observed in the fertilization rate of blastocysts among ICSI timing after the first PB extrusion, the blastocyst rate at 1–2 h was lowest among groups at 2–4 h, 4–6 h, 6–8 h, and 8–10 h. Comparing ICSI to IVF, the fertilization rates obtained in ICSI were higher than in IVF (p>0.05). No significant difference was noted in the cleaved blastocyst rate between ICSI and IVF. Following the transfer of 37 ICSI blastocysts, 4 of 20 recipients became pregnant, while with the transfer of 21 6-cell- to 8-cell-stage ICSI embryos, 3 of 8 recipients became pregnant. Four healthy offspring were produced and grew normally. These are the first marmoset offspring produced by ICSI, making it an effective fertilization method for marmosets.  相似文献   

7.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

8.

Background

Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or ‘programming’ of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication.

Methodology/Principal Findings

We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation.

Conclusions/Significance

Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.  相似文献   

9.

Objective

To evaluate ovarian response and cumulative live birth rate of women undergoing in-vitro fertilization (IVF) treatment who had discordant baseline serum anti-Mullerian hormone (AMH) level and antral follicle count (AFC).

Methods

This is a retrospective cohort study on 1,046 women undergoing the first IVF cycle in Queen Mary Hospital, Hong Kong. Subjects receiving standard IVF treatment with the GnRH agonist long protocol were classified according to their quartiles of baseline AMH and AFC measurements after GnRH agonist down-regulation and before commencing ovarian stimulation. The number of retrieved oocytes, ovarian sensitivity index (OSI) and cumulative live-birth rate for each classification category were compared.

Results

Among our studied subjects, 32.2% were discordant in their AMH and AFC quartiles. Among them, those having higher AMH within the same AFC quartile had higher number of retrieved oocytes and cumulative live-birth rate. Subjects discordant in AMH and AFC had intermediate OSI which differed significantly compared to those concordant in AMH and AFC on either end. OSI of those discordant in AMH and AFC did not differ significantly whether either AMH or AFC quartile was higher than the other.

Conclusions

When AMH and AFC are discordant, the ovarian responsiveness is intermediate between that when both are concordant on either end. Women having higher AMH within the same AFC quartile had higher number of retrieved oocytes and cumulative live-birth rate.  相似文献   

10.
Blagovic K  Kim LY  Voldman J 《PloS one》2011,6(8):e22892

Background

Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC) pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4) is known to be required in mouse ESC (mESC) neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands.

Methodology/Principal Findings

We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\paracrine) factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s) are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27) and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs.

Conclusions/Significance

Our results demonstrate for the first time that flow can downregulate autocrine\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4-dependent and -independent pathways. Overall, by uncovering autocrine\paracrine processes previously hidden in conventional culture systems, our results establish microfluidic perfusion as a technique to study and manipulate diffusible signaling in cell systems.  相似文献   

11.

Background

Concerns regarding the safety of ICSI have been intensified recently due to increased risk of birth defects in ICSI born children. Although fertilization rate is significantly higher in ICSI cycles, studies have failed to demonstrate the benefits of ICSI in improving the pregnancy rate. Poor technical skill, and suboptimal in vitro conditions may account for the ICSI results however, there is no report on the effects of oocyte manipulations on the ICSI outcome.

Objective

The present study elucidates the influence of mock ICSI on the functional and genetic integrity of the mouse oocytes.

Methods

Reactive Oxygen Species (ROS) level, mitochondrial status, and phosphorylation of H2AX were assessed in the in vivo matured and IVM oocytes subjected to mock ICSI.

Results

A significant increase in ROS level was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P<0.05-0.001) whereas unique mitochondrial distribution pattern was found only in IVM oocytes (P<0.01-0.001). Importantly, differential H2AX phosphorylation was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P <0.001).

Conclusion

The data from this study suggests that mock ICSI can alter genetic and functional integrity in oocytes and IVM oocytes are more vulnerable to mock ICSI induced changes.  相似文献   

12.
We investigated the effects of resveratrol, a phytoalexin with various pharmacologic activities, on in vitro maturation (IVM) of porcine oocytes. We investigated intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, as well as gene expression in mature oocytes, cumulus cells, and in vitro fertilization (IVF)-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and IVF. After 44 h of IVM, no significant difference was observed in maturation of the 0.1, 0.5, and 2.0 μM resveratrol groups (83.0%, 84.1%, and 88.3%, respectively) compared with the control (84.1%), but the 10.0 μM resveratrol group showed significantly decreased nuclear maturation (75.0%) (P < 0.05). The 0.5- and 2.0-μm groups showed a significant (P < 0.05) increase in intracellular GSH levels compared with the control and 10.0 μM group. Intracellular ROS levels in oocytes matured with 2.0 μM resveratrol decreased significantly (P < 0.05) compared with those in the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rates and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) than the control group. Cumulus-oocytes complex treated with 2.0 μM resveratrol showed lower expression of apoptosis-related genes compared with mature oocytes and cumulus cells. Cumulus cells treated with 2.0 μM resveratrol showed higher (P < 0.05) expression of proliferating cell nuclear antigen than the control group. IVF-derived blastocysts derived from 2.0 μM resveratrol-treated oocytes also had less (P < 0.05) Bak expression than control IVF-derived blastocysts. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating gene expression during oocyte maturation.  相似文献   

13.

PURPOSE:

This study was conducted to determine the frequency and contribution of chromosomal abnormalities in miscarriages and in couples with recurrent in vitro fertilization/intra cytoplasmic sperm injection (IVF/ICSI) failure.

MATERIALS and METHODS:

A total of 221 individuals; 79 with three or more recurrent spontaneous abortions and 142 with at least three IVF/ICSI failures. Chromosomal analysis from peripheral blood lymphocytes was performed according to standard cytogenetic methods using G-banding technique.

RESULTS:

Abnormal karyotype was found in 21 (9.50%) individuals. Of these 21 subjects, 4 (19.04%) exhibited sex chromosomal abnormalities and 17 (80.96%) had autosomal abnormalities. Male partners had significantly higher chromosomal abnormalities (5.88%) than of females (3.61%). These abnormalities were also higher in patients with recurrent spontaneous abortions than with IVF/ICSI failure (P < 0.05).

CONCLUSIONS:

These data may be indicative that chromosomal abnormalities are involved more in spontaneous abortions than in recurrent IVF/ICSI failure. Cytogenetic analysis could be valuable for these couples when clinical data fail to clarify the cause.  相似文献   

14.

Background/Aims

The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium.

Methodology and Principal Findings

Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization.

Conclusions

This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization.  相似文献   

15.

Background

During the last years, several studies have reported the significant relationship between the production of soluble HLA-G molecules (sHLA-G) by 48–72 hours early embryos and an increased implantation rate in IVF protocols. As consequence, the detection of HLA-G modulation was suggested as a marker to identify the best embryos to be transferred. On the opposite, no suitable markers are available for the oocyte selection.

Methodology/Principal Findings

The major finding of the present paper is that the release of ICAM-1 might be predictive of oocyte maturation. The results obtained are confirmed using three independent methodologies, such as ELISA, Bio-Plex assay and Western blotting. The sICAM-1 release is very high in immature oocytes, decrease in mature oocytes and become even lower in in vitro fertilized embryos. No significant differences were observed in the levels of sICAM-1 release between immature oocytes with different morphological characteristics. On the contrary, when the mature oocytes were subdivided accordingly to morphological criteria, the mean sICAM-I levels in grade 1 oocytes were significantly decreased when compared to grade 2 and 3 oocytes.

Conclusions/Significance

The reduction of the number of fertilized oocytes and transferred embryos represents the main target of assisted reproductive medicine. We propose sICAM-1 as a biochemical marker for oocyte maturation and grading, with a possible interesting rebound in assisted reproduction techniques.  相似文献   

16.
The objective was to assess the ability of testicular spermatozoa to fertilize in vitro matured domestic cat oocytes and support blastocyst formation in vitro following intra-cytoplasmic sperm injection (ICSI). After IVM, oocytes were randomly and equally allocated among treatment groups (ICSI with testicular spermatozoa, ICSI with ejaculated spermatozoa, sham ICSI, and control IVF). At 18 h after either injection or insemination, the percentage of fertilized oocytes (per total metaphase II oocytes) was approximately 65% after ICSI with testicular or ejaculated spermatozoa (P > 0.05), which was less (P < 0.05) than control IVF (approximately 90%). On Day 7, the percentage of cleaved embryos (per total metaphase II oocytes) was approximately 60% after ICSI with testicular or ejaculated spermatozoa (P > 0.05), which also was less (P < 0.05) than control IVF (approximately 85%). After ICSI with testicular spermatozoa, the percentage of blastocysts (per total cleaved embryos) was approximately 11.0%, which was less (P < 0.05) than ICSI with ejaculated spermatozoa (approximately 21.0%); the latter was less (P < 0.05) than control IVF (approximately 43.0%). No blastocyst formation was observed after sham ICSI. For the first time in the domestic cat, this study demonstrated the fertilizing ability and developmental potential of intra-testicular spermatozoa delivered directly into intra-ovarian oocytes matured in vitro.  相似文献   

17.

Background

Assisted reproductive technologies allow to utilize a limited number of fully grown oocytes despite the presence in the ovary of a large pool of meiotically incompetent gametes potentially able to produce live births. In vitro folliculogenesis could be useful to recruit these oocytes by promoting their growth and differentiation.

Methodology/Principal Findings

In vitro folliculogenesis was performed starting from sheep preantral (PA) follicles to evaluate oocyte nuclear/epigenetic maturation. Chromatin configuration, quantification of global DNA methylation, and epigenetic remodelling enzymes were evaluated with immunocytochemistry, telomere elongation was assessed with the Q-FISH technique, while the DNA methylation status at the DMRs of maternally IGF2R and BEGAIN, and paternally H19 methylated imprinted genes was determined by bisulfite sequencing and COBRA. Specifically, 70% of PA underwent early antrum (EA) differentiation and supported in culture oocyte global DNA methylation, telomere elongation, TERT and Dnmt3a redistribution thus mimicking the physiological events that involve the oocyte during the transition from secondary to tertiary follicle. Dnmt1 anticipated cytoplasmic translocation in in vitro grown oocytes did not impair global and single gene DNA methylation. Indeed, the in vitro grown oocytes acquired a methylation profile of IGF2R and BEGAIN compatible with the follicle/oocyte stage reached, and maintained an unmethylated status of H19. In addition, the percentage of oocytes displaying a condensed chromatin configuration resulted lower in in vitro grown oocytes, however, their ability to undergo meiosis and early embryo development after IVF and parthenogenetic activation was similar to that recorded in EA follicle in vivo grown oocytes.

Conclusions/Significance

In conclusion, the in vitro folliculogenesis was able to support the intracellular/nuclear mechanisms leading the oocytes to acquire a meiotic and developmental competence. Thus, the in vitro culture may increase the availability of fertilizable oocytes in sheep, and become an in vitro translational model to investigate the mechanisms governing nuclear/epigenetic oocyte maturation.  相似文献   

18.
A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the oocytes (P > 0.05). Therefore, slaughterhouse oocytes developed a greater proportion of blastocysts than LOPU ones, expressed as the percentage of total cumulus oocyte complexes entering to IVM. Vitrified-thawed blastocysts presented similar survival and hatching rates between the oocyte origin, media, or method of activation. In conclusion, slaughterhouse and LOPU derived oocytes may have different IVM kinetics and require different IVM and IVF conditions. Although the IVM and IVF systems still need improvements to enhance embryo yield, the in vitro development step is able to generate good quality embryos from LOPU-derived oocytes.  相似文献   

19.
Leptin, a multifunctional hormone, is present in mammalian oocytes and follicular fluids and cumulus cells. While leptin modulates oocyte maturation in vitro which seems to result in enhancement of embryo development, it is unclear whether leptin treatment of oocytes affects cytoplasmic maturation and fertilization processes. In order to gain a better understanding of the role of leptin during oocyte maturation, we examined microtubule and microfilament assembly following oocyte maturation and blastocyst formation, mitogen-activated protein kinase (MAPK) activity, and pronuclear formation following parthenogenetic stimuli or intracytoplasmic sperm injection (ICSI) in leptin-treated oocytes. Addition of 10 or 100 ng/ml leptin during oocyte maturation did not increase the proportion of metaphase II oocytes, but enhanced development to blastocyst stage by day 7 (P < 0.01) after parthenogenetic activation (PA), accompanied by increased cell number. However there was no effect on the number of apoptotic cells in blastocysts. Following maturation in the presence of leptin, there were more oocytes with normal spindle formation. MAPK activity decreased more rapidly, and pronuclear formation was accelerated after parthenogenetic activation or ICSI of leptin-treated oocytes. These results suggested that exogeneous leptin enhanced spindle assembly and accelerated pronuclear formation following fertilization, possibly via the MAPK pathway.  相似文献   

20.

Context

Mutations of the fragile X mental retardation 1 (FMR1) gene are associated with distinct ovarian aging patterns.

Objective

To confirm in human in vitro fertilization (IVF) that FMR1 affects outcomes, and to determine whether this reflects differences in ovarian aging between FMR1 mutations, egg/embryo quality or an effect on implantation.

Design, Setting, Patients

IVF outcomes were investigated in a private infertility center in reference to patients'' FMR1 mutations based on a normal range of CGGn = 26–34 and sub-genotypes high (CGGn>34) and low (CGG<26). The study included 3 distinct sections and study populations: (i) A generalized mixed-effects model of morphology (777 embryos, 168 IVF cycles, 125 infertile women at all ages) investigated whether embryo quality is associated with FMR1; (ii) 1041 embryos in 149 IVF cycles in presumed fertile women assessed whether the FMR1 gene is associated with aneuploidy; (iii) 352 infertile patients (< age 38; in 1st IVF cycles) and 179 donor-recipient cycles, assessed whether the FMR1 gene affects IVF pregnancy chances via oocyte/embryo quality or non-oocyte maternal factors.

Interventions

Standardized IVF protocols.

Main Outcome Measures

Morphologic embryo quality, ploidy and pregnancy rates.

Results

(i) Embryo morphology was reduced in presence of a low FMR1 allele (P = 0.032). In absence of a low allele, the odds ratio (OR) of chance of good (vs. fair/poor) embryos was 1.637. (ii) FMR1 was not associated with aneuploidy, though aneuploidy increased with female age. (iii) Recipient pregnancy rates were neither associated with donor age or donor FMR1. In absence of a low FMR1 allele, OR of clinical pregnancy (vs. chemical or no pregnancy) was 2.244 in middle-aged infertility patients.

Conclusions

A low FMR1 allele (CGG<26) is associated with significantly poorer morphologic embryo quality and pregnancy chance. As women age, low FMR1 alleles affect IVF pregnancy chances by reducing egg/embryo quality by mechanisms other than embryo aneuploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号