首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of 4-anilinoquinazoline derivatives (19a19t) were designed and synthesized through incorporation of the 2-nitroimidazole moiety into the 4-anilinoquinazoline scaffold of EGFR inhibitors. The most promising compound 19h displayed potent EGFR inhibitory activity with the IC50 value of 0.47 nM. It also strongly suppressed the proliferation of A549 and HT-29 cells with sub-micromolar IC50 values both under normoxia and hypoxia, which were several folds more potent than gefitinib and erlotinib. Further reductive mimic investigation revealed that 19h could be reductive activated under hypoxia and was fully consistent with the results of cell apoptotic assay and in vitro metabolism evaluation. Our results suggest that the incorporation of hypoxia-activated moiety into EGFR inhibitor scaffold might be a tractable strategy to overcome the tumor hypoxia.  相似文献   

2.
A series of amide-coupled benzoic nitrogen mustard derivatives as potential EGFR and HER-2 kinase inhibitors were synthesized and reported for the first time. Some of them exhibited significant EGFR and HER-2 inhibitory activity. Of all the studied compounds, compounds 5b and 5t exhibited the most potent inhibitory activity, which was comparable to the positive control erlotinib. Docking simulation was performed to position compounds 5b and 5t into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicated that some of the benzoic nitrogen mustard derivatives possessed high antiproliferative activity against MCF-7. In particular, compounds 5b and 5t with potent inhibitory activity in tumor growth inhibition may function as potential antitumor agents.  相似文献   

3.
4.
Overexpression of EGFR and HER2 are observed in many breast, ovarian, colon and prostate cancers. The second and third generation irreversible EGFR/HER2 dual kinase inhibitors became popular after the approval of Afatinib by FDA to overcome the mutation related problem. To find efficacious drug candidates, a series of novel quinazoline derivatives were designed, synthesized and evaluated as dual EGFR/HER2 tyrosine kinase (TK) inhibitors. Selected twenty four compounds were reported here with significant inhibitory activities against EGFR/HER2 tyrosine kinases. Several compounds showed nanomolar IC50 values. In vitro studies of quinazoline derivatives were done on NCI-H1975, HCC827, A431, MDA MB-453 cell lines. The compounds 1a, 1d and 1v were found more potent compared to standard drug afatinib. In vivo efficacy study of 1d on nude mice NCI-H1975 tumour xenograft model was discussed.  相似文献   

5.
A series of novel quinazoline derivatives bearing various C-6 benzamide substituents were synthesized and evaluated as EGFR inhibitors, and most showed significant inhibitory potency against EGFR kinase. In particular, compound 6g possessed potent inhibitory activity against EGFR wild-type (IC50?=?5?nM), and strong antiproliferative activity against HCC827 and Ba/F3 (L858R) cell lines. Kinase profiling against a panel of 365 kinases showed that 6g was highly selective for EGFR. Furthermore, 6g showed desirable properties in assays of liver microsome metabolic stability and cytochromes P450 inhibition and preliminary pharmacokinetic study. The overall attractive profile of 6g made it an interesting compound for further development.  相似文献   

6.
Discovery of mutant-selective kinase inhibitors is one of the challenges in medicinal chemistry and is a main issue for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. We tried to improve the selectivity of pan-HER inhibitors for mutant EGFRs. Utilizing click chemistry, triazole-tethered quinazoline derivatives were synthesized, based on a quinazoline scaffold showing pan-HER inhibition. The representative compound 5j exhibited 17- and 52-fold improved selectivity for EGFR L858R/T790M over wild-type EGFR and HER2, respectively, and demonstrated 6.7-fold more potent antiproliferative activity against PC9 cells harboring EGFR-activating mutation than gefitinib. Although the described quinazolines did not surpass pyrimidines as 3rd generation EGFR inhibitors in terms of selectivity for mutant EGFRs, our approach might provide information that would help in the identification of mutant-selective compounds among pan-HER inhibitors using the quinazoline scaffold.  相似文献   

7.
Two series of novel tricyclic oxazine and oxazepine fused quinazolines have been designed and synthesized. The in vitro antitumor effect of the title compounds was screened on N87, A431, H1975, BT474 and Calu-3 cell lines. Compared to erlotinib and gefitinib, compounds 1a1h were found to demonstrate more potent antitumor activities. Several derivatives could counteract EGF-induced phosphorylation of EGFR in cells, and their potency was comparable to the reference compounds. Compounds 1a1h were chosen for further evaluation of EGFR and HER2 in vitro kinase inhibitory activity. Compounds 1b1f, 1h effectively inhibited the in vitro kinase activity of EGFR and HER2 with similar efficacy as erlotinib and gefitinib.  相似文献   

8.
Several members of the quinazoline class of known tyrosine kinase inhibitors are approved anticancer agents, often showing selectivity for receptors of the HER/ErbB-family. Combining structural elements of this class with the bisindolylmethanone-structure led to a series of novel compounds. These compounds inhibited EGFR in the nanomolar range. Moreover, inhibition of EGFR autophosphorylation in intact A431 cells was shown, with IC50 values ranging form 0.3–1 μM for compound 42, and 0.1–0.3 μM for 45. In a panel of 42 human tumor cell lines the sensitivity profile of the novel compounds was shown to be similar to that of the quinazoline class of tyrosine kinase inhibitors lapatinib and erlotinib (Tarceva®).  相似文献   

9.
Mammalian target of rapamycin complex 1 and 2 (mTORC1/2) are overactive in colorectal carcinomas; however, the first generation of mTOR inhibitors such as rapamycin have failed to show clinical benefits in treating colorectal carcinoma in part due to their effects only on mTORC1. The second generation of mTOR inhibitors such as PP242 targets mTOR kinase; thus, they are capable of inhibiting both mTORC1 and mTORC2. To examine the therapeutic potential of the mTOR kinase inhibitors, we treated a panel of colorectal carcinoma cell lines with PP242. Western blotting showed that the PP242 inhibition of mTORC2-mediated AKT phosphorylation at Ser 473 (AKTS473) was transient only in the first few hours of the PP242 treatment. Receptor tyrosine kinase arrays further revealed that PP242 treatment increased the phosphorylated epidermal growth factor receptor (EGFR) at Tyr 1068 (EGFRT1068). The parallel increase of AKTS473 and EGFRT1068 in the cells following PP242 treatment raised the possibility that EGFR phosphorylation might contribute to the PP242 incomplete inhibition of mTORC2. To test this notion, we showed that the combination of PP242 with erlotinib, an EGFR small molecule inhibitor, blocked both mTORC1 and mTORC2 kinase activity. In addition, we showed that the combination treatment inhibited colony formation, blocked cell growth and induced apoptotic cell death. A systemic administration of PP242 and erlotinib resulted in the progression suppression of colorectal carcinoma xenografts in mice. This study suggests that the combination of mTOR kinase and EGFR inhibitors may provide an effective treatment of colorectal carcinoma.  相似文献   

10.
Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.  相似文献   

11.
Tyrosine kinases such as SRC family kinases (SFKs) as well as the mammalian target of rapamycin (mTOR) serine/threonine kinase are often constitutively activated in acute myeloid leukemia (AML) and hence constitute potential therapeutic targets. Here we demonstrate that the epidermal growth factor receptor (EGFR) inhibitor erlotinib, which has previously been shown to mediate antiproliferative/cytotoxic off-target effects in myelodysplastic syndrome (MDS) and AML blasts, reduces SFK overactivation. Erlotinib induced an arrest in the G1 phase of the cell cycle that, in cells with constitutive SFK activation, could be recapitulated by chemical inhibition of SFKs with 3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-α]pyrimidin-4-amine (PP2). Moreover, erlotinib inhibited the phosphorylation of mTOR targets like p70SK6, stimulated the maturation of the autophagic marker LC3 and promoted the formation of autophagosomes. Notably, PP2 and the mTOR inhibitor rapamycin had a similar cell cycle-arresting activity to erlotinib, but neither of these compounds alone induced significant levels of cell death. Altogether, these results suggest that the therapeutic off-target effect of erlotinib may be linked to, yet cannot be entirely explained by, the inhibition of oncogenic signaling via SFKs and mTOR. Thus, combination therapies with erlotinib and rapamycin might be beneficial for MDS and AML patients.  相似文献   

12.
Two series of pyrazole derivatives designing for potential EGFR kinase inhibitors have been discovered. Some of them exhibited significant EGFR inhibitory activity. Compound 3-(3,4-dimethylphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (C5) displayed the most potent EGFR inhibitory activity with IC50 of 0.07 μM, which was comparable to the positive control erlotinib. Docking simulation was performed to position compound C5 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the pyrazole derivatives own high antiproliferative activity against MCF-7. Compound C5 showed significant antiproliferative activity against MCF-7 with IC50 of 0.08 μM. Therefore, compound C5 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

13.
Two series of thiazolidinone derivatives designing for potential EGFR and HER-2 kinase inhibitors have been discovered. Some of them exhibited significant EGFR and HER-2 inhibitory activity. Compound 2-(2-(5-bromo-2-hydroxybenzylidene)hydrazinyl)thiazol-4(5H)-one (12) displayed the most potent inhibitory activity (IC50 = 0.09 μM for EGFR and IC50 = 0.42 μM for HER-2), comparable to the positive control erlotinib. Docking simulation was performed to position compound 12 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the thiazolidinone derivatives own high antiproliferative activity against MCF-7. Compound 12 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

14.
Elevated expression and activity of the epidermal growth factor receptor (EGFR)/protein kinase B (Akt) signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC). Several studies have demonstrated that microRNA-7 (miR-7) regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3′-untranslated region (3′-UTR). In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5) that were sensitive to the EGFR tyrosine kinase inhibitor (TKI) erlotinib (Tarceva). miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.  相似文献   

15.
A series of long-chain derivatives of chrysin (compounds 322) were synthesized to evaluate for their antiproliferative activities against the human liver cancer cell line HT-29 and EGFR inhibitory activity. Among the compounds tested, compounds hexadecyl 2-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)acetate (10) and N-hexadecyl 2-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)acetamide (20) displayed potent EGFR inhibitory activity with IC50 values of 0.048 μM and 0.035 μM), comparable to the positive control erlotinib. Docking simulation of compounds 10 and 20 was carried out to illustrate the binding mode of the molecular into the EGFR active site, and the result suggested that compound 10 and 20 can bind the EGFR kinase well. Thus, compounds 10 and 20 with potent EGFR inhibitory activity would be potential anticancer agents.  相似文献   

16.
The development of a new series of apoptosis signal-regulating kinase 1 (ASK1) inhibitors is described. Starting from purine, pyrimidine and quinazoline scaffolds identified by high throughput screening, we used tools of structure-based drug design to develop a series of potent kinase inhibitors, including 2-arylquinazoline derivatives 12 and 23, with submicromolar inhibitory activities against ASK1. Kinetic analysis demonstrated that the 2-arylquinazoline scaffold ASK1 inhibitors described herein are ATP competitive.  相似文献   

17.
Four series of novel thieno[3,2-d]pyrimidine and quinazoline derivatives containing N-acylhydrazone or semicarbazone were designed, synthesized, and evaluated for their biological activity. Of which compound 14 showed the most potent antitumor activities with IC50 values of 1.78 μM, 1.02 μM, 1.98 μM, 0.41 μM and 0.22 μM against HT-29, MDA-MB-231, U87MG, PC-3 and HCT-116 cell lines respectively. Inhibition of enzymatic assays showed that PI3Kα was very likely to be one of the drug targets of 14 with the IC50 value of 0.20 μM. According to the results of antitumor activity, the SARs were summarized, which indicated that thieno[3,2-d]pyrimidine and semicarbazone are optimal fragments. In addition, compounds with hydroxyl group at the 4-position on the terminal phenyl ring were more active. Annexin-V and propidium iodide (PI) double staining confirmed that the most active cytotoxic compound 14 can induce cell apoptosis in HCT-116 cells. Moreover, the influence of 14 on the cell cycle distribution was assessed on the HCT-116 cell line, exhibiting a cell cycle arrest at the G2/M phase. Furthermore, molecular docking analysis was also performed to determine possible binding modes between PI3Kα and the target compound. These results will guide us to further refine the structure of the thieno[3,2-d]pyrimidine and quinazoline derivatives to achieve optimal antitumor activity.  相似文献   

18.
Two series of erlotinib-alkylphospholipid hybrids were prepared and evaluated for their antiproliferative activities against a panel of four cell lines representing lung, breast, liver and skin cancers using erlotinib and miltefosine as reference standards. Amide analogs elicited more enhanced cytotoxic activity than analogous esters. Amide derivatives 8d and 8e exhibited promising broad-spectrum antiproliferative activity and higher efficacy than reference erlotinib and miltefosine. Their cellular GI50 values was in the ranges of 24.7–46.9 μM and 26.8–43.1 μM for 8e and 8d respectively. Assay results of the inhibitory activity of the prepared compounds on EGFR kinase reaction and Akt phosphorylation in conjugation with statistical correlation analysis indicated that other mechanisms might contribute to their elicited cytotoxicities. In addition, statistical correlation analysis revealed that mechanisms of elicited cytotoxicities for amide series might be different from ester series. In addition, correlation analysis indicated variations in the mechanisms according to the types of cell line.  相似文献   

19.
A series of novel 2,4,5-substituted pyrimidine derivatives were synthesized and evaluated for inhibition against the human hepatocellular carcinoma BEL-7402 cancer cell line. Several compounds showed potent inhibition with an IC50 value less than 0.10 μM. Structure–activity relationships for this class of compounds at the 2- and 5-position of the pyrimidine scaffold have been elucidated. The most active compound 7gc showed good inhibition of several different human cancer cell lines with IC50 values from 0.024 to 0.55 μM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号