首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escape performance was investigated in the golden grey mullet Liza aurata exposed to various levels of oxygen: >85 ( i.e. normoxia), 50, 20 and 10 % air saturation. Since the golden grey mullet performed aquatic surface respiration when air saturation approached 15–10 %, escape performance was tested at 10 % air saturation with and without access to the surface (10 % S and 10 % C, respectively). Various locomotor and behavioural variables were measured, such as cumulative distance, maximum swimming speed, acceleration, responsiveness (per cent of responding fish), response latency and directionality. Golden grey mullet showed a decrease in responsiveness when the oxygen level was reduced to 10 % air saturation, whether the surface access was obstructed or not. Hypoxia did not have any effect on the response latency. Cumulative distance and maximum swimming speed over a fixed time were significantly different between normoxic conditions and 10 % C, while no differences were found in maximum acceleration. While the fish's 'C‐bend' was mainly directed away from the stimulus in normoxia, the proportion of away and towards 'C‐bend' was random when the oxygen was ≤20 % air saturation. This suggested an impairment of the left‐right discrimination at the initiation of the fast start. Hypoxia affected golden grey mullet escape performance mainly through an impairment of responsiveness and directionality, while locomotor performance was affected only in severe hypoxia when the surface was obstructed. The study showed that, in addition to forcing the fish to the surface as shown by previous studies, hypoxia may also reduce fish elusiveness facing a predator by directly impairing its escape performance.  相似文献   

2.
Foraging animals must balance benefits of food acquisition with costs induced by a post-prandial reduction in performance. Eating to satiation can lead to a reduction in locomotor and escape performance, which increases risk should a threat subsequently arises, but limiting feeding behaviour may be maladaptive if food intake is unnecessarily reduced in the prediction of threats that do not arise. The efficacy of the trade-off between continued and interrupted feeding therefore relies on information about the future risk, which is imperfect. Here, we find that black carp (Mylopharyngodon piceus) can balance this trade-off using an a posteriori strategy; by eating to satiation but regurgitating already ingested food when a threat arises. While degrees of satiation (DS) equal to or greater than 60% reduce elements of escape performance (turning angle, angular velocity, distance moved, linear velocity), at 40% DS or lower, performance in these tasks approaches levels comparable to that at 0% satiation. After experiencing a chasing event, we find that fish are able to regurgitate already ingested food, thereby changing the amount of food in their gastrointestinal tract to consistent levels that maintain high escape performance. Remarkably, regurgitation results in degrees of satiation between 40 and 60% DS, regardless of whether they had previously fed to 40, 60 or 100% DS. Using this response, fish are able to maximize food intake, but regurgitate extra food to maintain escape performance when they encounter a threat. This novel strategy may be effective for continual grazers and species with imperfect information about the level of threat in their environment.  相似文献   

3.
The effect of prey size on the timing of the startle response in the sculpin Leptocottus armatus was investigated. Escape responses were triggered visually by a looming image obtained using a computer‐generated animation of an approaching black disk. The results showed that apparent looming threshold ( T AL, i.e. the threshold at which the rate of change of the visual angle subtended by predator frontal profile onto the prey's eye triggers an escape response by the prey) decreased with increasing prey size. Distance travelled within a fixed time was unaffected by size. Theoretical considerations suggest that larger prey would need to travel a longer distance (and so they would need more time) in order to move their whole body outside the predator's approaching gape. Therefore, the scaling of T AL may be explained by taking into account both ultimate and proximate considerations that need not be mutually exclusive. At an ultimate level, lower T AL in larger fish may be explained in terms of offsetting the disadvantage of offering a larger volume to be intercepted by the predator. At a proximate level, T AL may be related to the fish's visual acuity, which is higher in larger fish.  相似文献   

4.
Escape manoeuvres of schooling Clupea harengus   总被引:1,自引:0,他引:1  
The escape behaviour of schooling herring startled by an artificial sound stimulus was observed by means of high speed video filming. Response latencies showed two distinct peaks, at 30 ms and c . 100 ms. Escape responses belonging to the two latency groups showed different turning rates during the first stage of the response, and showed different escape trajectories. We suggest that long latency escapes may be responses to startled neighbours or simply weak responses to the sound stimulus. In addition, the different contraction rates during the C-bend formation seen in the two latency groups may imply differences in the neuronal commands. The escape responses of herring were directed away from the stimulus more often than towards it (88% of the total). These away responses were more common in long latency responses, suggesting that the latter enable herring to be more accurate in discerning the direction of the threat. Startled fish contracting their body towards the stimulus (performing a towards response) appear to correct their escape course, since their escape trajectory distribution is non-uniformty distributed around 360° and directed away from the stimulus. We hypothesize that when herring are schooling, the ability of each fish to correct its trajectory following turns towards the stimulus is enhanced.  相似文献   

5.
Hypoxia and the antipredator behaviours of fishes   总被引:2,自引:0,他引:2  
Hypoxia is a phenomenon occurring in marine coastal areas with increasing frequency. While hypoxia has been documented to affect fish activity and metabolism, recent evidence shows that hypoxia can also have a detrimental effect on various antipredator behaviours. Here, we review such evidence with a focus on the effect of hypoxia on fish escape responses, its modulation by aquatic surface respiration (ASR) and schooling behaviour. The main effect of hypoxia on escape behaviour was found in responsiveness and directionality. Locomotor performance in escapes was expected to be relatively independent of hypoxia, since escape responses are fuelled anaerobically. However, hypoxia decreased locomotor performance in some species (Mugilidae) although only in the absence of ASR in severe hypoxia. ASR allows fish to show higher escape performance than fish staying in the water column where hypoxia occurs. This situation provides a trade-off whereby fish may perform ASR in order to avoid the detrimental effects of hypoxia, although they would be subjected to higher exposure to aerial predation. As a result of this trade-off, fishes appear to minimize surfacing behaviour in the presence of aerial predators and to surface near shelters, where possible. For many fish species, schooling can be an effective antipredator behaviour. Severe hypoxia may lead to the disruption of the school unit. At moderate levels, hypoxia can increase school volume and can change the shuffling behaviour of individuals. By altering school structure and dynamics, hypoxia may affect the well functioning of schooling in terms of synchronization and execution of antipredator manoeuvres. School structure and volume appear to be the results of numerous trade-offs, where school shape may be dictated by the presence of predators, the need for energy saving via hydrodynamic advantages and oxygen level. The effects of hypoxia on aquatic organisms can be taxon specific. While hypoxia may not necessarily increase the vulnerability of fish subject to predation by other fish (since feeding in fish also decreases in hypoxia), predators from other taxa such as birds, jellyfish or aquatic mammals may take advantage of the detrimental effects of hypoxia on fish escape ability. Therefore, the effect of hypoxia on fish antipredator behaviours may have major consequences for the composition of aquatic communities.  相似文献   

6.
The outcome of predator-prey encounters is determined by a number of factors related to the locomotor and sensory performance of the animals. Escape responses can be triggered visually, i.e. by the magnifying retinal image of an approaching object (i.e. a predator), called the looming effect, and calculated as the rate of change of the angle subtended by the predator frontal profile as seen by the prey. A threshold of looming angle (ALT, the Apparent Looming Threshold) determines the reaction distance of a startled fish, which is proportional to the attack speed of the predator and its apparent frontal profile. Optimal tactics for predator attacks as well as consideration on their functional morphology are discussed in relation to ALT. Predator optimal attack speeds depend on predator morphology as well as the prey ALT. Predictions on the scaling of ALT suggest that ALT may increase (i.e. implying a decrease in reaction distance) with prey size in cases in which predator attack speeds are high (i.e. > 4 L/s in a 1-m long predator), while it may be relatively independent of prey size when predators attack at lower speeds. The issue of scaling of ALT is discussed using examples from field and laboratory studies. While the timing of the escape is a crucial issue for avoiding being preyed upon, the direction of escape manoeuvres may also determine the success of the escape. A simple theoretical framework for optimal escape trajectories is presented here and compared with existing data on escape trajectories of fish reacting to startling stimuli.  相似文献   

7.
Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions.  相似文献   

8.
A prey's body orientation relative to a predator's approach path may affect risk of fleeing straight ahead. Consequently, prey often turn before fleeing. Relationships among orientation, turn, and escape angles and between these angles and predation risk have not been studied in terrestrial vertebrates and have rarely been studied in the field. Escape angles are expected to lead away from predators and be highly variable to avoid being predictable by predators. Using approach speed as a risk factor, we studied these issues in the zebra‐tailed lizard, Callisaurus draconoides. Lizards fled away from human simulated predators, but most did not flee straight away. Escape angles were variable, as expected under the unpredictability hypothesis, and had modes at nearly straight away (i.e., 0°) and nearly perpendicular to the predator's approach path (90°). The straight away mode suggests maximal distancing from the predator; the other mode suggests maintaining ability to monitor the predator or possibly an influence of habitat features such as obstacles and refuges that differ among directions. Turn angles were larger when orientation was more toward the predator, and escape angles were closer to straight away when turn angles were larger. Turning serves to reach a favorable fleeing direction. When orientation angle was more toward the predator, escape angle was unaffected, suggesting that turn angle compensates completely for increased risk of orientation toward the predator. When approached more rapidly, lizards fled more nearly straight away, as expected under greater predation risk. Turn angles were unrelated to approach speed.  相似文献   

9.
Behavioral lateralization, which is associated with the functional lateralization of the two brain hemispheres, commonly exists in animals and can provide an individual with benefits such as enhanced cognition and dual tasking. Lateral bias in limb use, as a type of behavioral lateralization, occur in many species, but the reasons for the coexistence of left‐ and right‐biased individuals in a population remain poorly understood. We examined the footedness of male yellow‐bellied tits (Pardaliparus venustulus) when they used feet to clamp mealworms against a perch, and tested its association with other fitness‐related behavioral traits (i.e., feeding efficiency, exploration tendency, and escape performance). We expected differently footed individuals to have respective advantages in these behaviors and thereby coexist (“respective advantage” hypothesis). We found their footedness repeatable, and there was no population‐level bias. While no associations of feeding efficiency and exploration tendency with footedness were detected, the right‐footed individuals were found to be harder to catch than the other individuals. Future studies need to investigate the reasons for the right‐footed individuals' superior escape performance. Moreover, the escape advantage for being right‐footed and the lack of population‐level bias in footedness in male yellow‐bellied tits suggest that the benefits related to left footedness also remain to be explored.  相似文献   

10.
The escape response of Atlantic cod larvae (Gadus morhua) 25 and 47 days post hatch (dph) - either fed or deprived of food for three days - was studied. Larval escape responses were provoked by water movement from the suction of a fixed-position pipette. Escape latency, distance, speed, burst speed, and vertical and lateral escape angles were quantified using motion tracking software designed for 3-D silhouette video recordings. Escape performance, expressed as escape distance and escape speed, improved with age. The escape angles were normally distributed and highly variable, ranging from − 170° to 170° and − 40° to 105° for lateral and vertical escape angles respectively. No food deprivation-induced effects in any of the behaviours were found, suggesting that there are no condition-related behavioural effects (size-independent effects) in escape response performance after 3 d of food deprivation. This may reflect a negligible difference in the cost/benefit equation for fed vs. food-deprived larvae in performing an escape response when under attack.  相似文献   

11.
Heart mass of American shad Alosa sapidissima did not change during migration in the Connecticut River. Spleen mass decreased and there was an increase in available blood haemoglobin (+22%) and haematocrit (+9%). The decreases in spleen somatic index (-29%) and spleen haemoglobin content (-15%) were dependent upon distance travelled upriver and not seasonal migration timing or short-term exercise events such as passage up a fish ladder. There was no effect of migration timing on any of the blood parameters measured, suggesting that any physiological responses during migration were based on distance travelled rather than seasonally variable conditions such as temperature, although blood haemoglobin (+24%) and haematocrit (+21%) increased after passage up a fish ladder. These changes in haematological physiology occurring during upstream migration may increase swimming performance and migratory success in American shad.  相似文献   

12.
Cockroaches escape from predators by turning and then running. This behavior can be elicited when stimuli deflect one of the rostrally located and highly mobile antennae. We analyzed the behavior of cockroaches, under free-ranging conditions with videography or tethered in a motion tracking system, to determine (1) how antennal positional dynamics influence escape turning, and (2) if visual cues have any influence on antennal mediated escape. The spatial orientation of the long antennal flagellum at the time of tactile stimulation affected the direction of resultant escape turns. However, the sign of flagellar displacement caused by touch stimuli, whether it was deflected medially or laterally for example, did not affect the directionality of turns. Responsiveness to touch stimuli, and escape turn performance, were not altered by blocking vision. However, because cockroaches first orient an antenna toward stimuli entering the peripheral visual field, turn direction can be indirectly influenced by visual input. Finally, when vision was blocked, the run phase of escape responses displayed reduced average velocities and distances traveled. Our results suggest that tactile and visual influences are integrated with previously known wind-sensory mechanisms to achieve multisensory control of the full escape response.  相似文献   

13.
Elevated carbon dioxide (CO(2)) has recently been shown to affect chemosensory and auditory behaviour, and activity levels of larval reef fishes, increasing their risk of predation. However, the mechanisms underlying these changes are unknown. Behavioural lateralization is an expression of brain functional asymmetries, and thus provides a unique test of the hypothesis that elevated CO(2) affects brain function in larval fishes. We tested the effect of near-future CO(2) concentrations (880 μatm) on behavioural lateralization in the reef fish, Neopomacentrus azysron. Individuals exposed to current-day or elevated CO(2) were observed in a detour test where they made repeated decisions about turning left or right. No preference for right or left turns was observed at the population level. However, individual control fish turned either left or right with greater frequency than expected by chance. Exposure to elevated-CO(2) disrupted individual lateralization, with values that were not different from a random expectation. These results provide compelling evidence that elevated CO(2) directly affects brain function in larval fishes. Given that lateralization enhances performance in a number of cognitive tasks and anti-predator behaviours, it is possible that a loss of lateralization could increase the vulnerability of larval fishes to predation in a future high-CO(2) ocean.  相似文献   

14.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   

15.
Larval red drum Sciaenops ocellatus survival, turning rate, routine swimming speed, escape response latency and escape response distance were significantly correlated with essential fatty‐acid (EFA) concentrations in eggs. Of the five traits that varied with egg EFA content, two (escape response latency and routine swimming speed) were significantly different when larvae were fed enriched diets compared with the low fatty‐acid diet, indicating that the larval diet can compensate for some imbalances in egg composition. Turning rate during routine swimming and escape response distance, however, did not change when larvae predicted to have low performance (based on egg composition) were fed an enriched diet, indicating that these effects of egg composition may be irreversible. Escape response distances and survival rates of larvae predicted to perform well (based on egg composition) and fed highly enriched diets were lower than expected, suggesting that high levels of EFA intake can be detrimental. Altogether, these results suggest that both maternal diet, which is responsible for egg EFA composition, and larval diet may play a role in larval survivorship and recruitment.  相似文献   

16.
During predator-prey encounters, a high locomotor performance in unsteady manoeuvres (i.e. acceleration, turning) is desirable for both predators and prey. While speed increases with size in fish and other aquatic vertebrates in continuous swimming, the speed achieved within a given time, a relevant parameter in predator-prey encounters, is size independent. In addition, most parameters indicating high performance in unsteady swimming decrease with size. Both theoretical considerations and data on acceleration suggest a decrease with body size. Small turning radii and high turning rates are indices of maneuverability in space and in time, respectively. Maneuverability decreases with body length, as minimum turning radii and maximum turning rates increase and decrease with body length, respectively. In addition, the scaling of linear performance in fish locomotion may be modulated by turning behaviour, which is an essential component of the escape response. In angelfish, for example, the speed of large fish is inversely related to their turning angle, i.e. fish escaping at large turning angles show lower speed than fish escaping at small turning angles. The scaling of unsteady locomotor performance makes it difficult for large aquatic vertebrates to capture elusive prey by using whole-body attacks, since the overall maneuverability and acceleration of small prey is likely to be superior to that of large predators. Feeding strategies in vertebrate predators can be related to the predator-prey length ratios. At prey-predator ratios higher than approximately 10(-2), vertebrate predators are particulate feeders, while at smaller ratios, they tend to be filter feeders. At intermediate ratios, large aquatic predators may use a variety of feeding methods that aid, or do not involve, whole body attacks. Among these are bubble curtains used by humpback whales to trap fish schools, and tail-slapping of fish by delphinids. Tail slapping by killer whales is discussed as an example of these strategies. The speed and acceleration achieved by the flukes of killer whales during tail slaps are higher and comparable, respectively, to those that can be expected in their prey, making tail-slapping an effective predator behaviour.  相似文献   

17.
Recent studies have shown that elevated CO2 can affect the behaviour of larval and juvenile fishes. In particular, behavioural lateralization, an expression of brain functional asymmetries, is affected by elevated CO2 in both coral reef and temperate fishes. However, the potentially interacting effects of rising temperatures and CO2 on lateralization are unknown. Here, we tested the combined effect of near-future elevated-CO2 concentrations (930 µatm) and temperature variation on behavioural lateralization of a marine damselfish, Pomacentrus wardi. Individuals exposed to one of four treatments (two CO2 levels and two temperatures) were observed in a detour test where they made repeated decisions about turning left or right. Individuals exposed to current CO2 and ambient temperature levels showed a significant right-turning bias at the population level. This biased was reversed (i.e. to the left side) in fish exposed to the elevated-CO2 treatment. Increased temperature attenuated this effect, resulting in lower values of relative lateralization. Consequently, rising temperature and elevated CO2 may have different and interactive effects on behavioural lateralization and therefore future studies on the effect of climate change on brain functions need to consider both these critical variables in order to assess the potential consequences for the ecological interactions of marine fishes.  相似文献   

18.
Buskey  Edward J. 《Hydrobiologia》1994,(1):447-453
Visual predation by fish on copepods involves prey encounter, attack and capture; during any of these processes prey selection can occur. Developmental changes in copepods, including increases in swimming speed, size and image contrast increase the encounter rate and distance at which they can be detected by predators. Copepods compensate for this increase vulnerability with age through diel vertical migration and improved escape capabilities. This study quantifies the changes in swimming speed and movement pattern with developmental stage of the copepod Acartia tonsa, using a video-computer system for motion analysis. Changes in visible size and image contrast with developmental stage were quantified under simulated natural illumination conditions using a video based image analysis system. The escape responses of the naupliar stages of the copepod Acartia tonsa were quantified in response to a stationary pipette sucking in water at a constant speed. Accurate quantification of the parameters that affect feeding selectivity of planktivorous fish will provide the basis for evaluation of their relative importance in future studies.  相似文献   

19.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.  相似文献   

20.
Teleost and amphibian prey undertake fast-start escape responses during a predatory attack in an attempt to avoid being captured. Although previously viewed as a reflex reaction controlled by the autonomic nervous system, the escape responses of individuals when repeatedly startled are highly variable in their characteristics, suggesting some behavioural mediation of the response. Previous studies have shown that fishes are able to learn from past experiences, but few studies have assessed how past experience with predators affect the fast-start response. Here we determined whether prior experience with the smell or sight of a predator (the Dottyback, Pseudochromis fuscus) affected the escape response of juveniles of the Spiny Chromis (Acanthochromis polyacanthus). Results show that individuals exposed to any of the predator cues prior to being startled exhibited a stronger escape response (i.e., reduced latency, increased escape distance, mean response speed, maximum response speed and maximum acceleration) when compared with controls. This study demonstrates the plasticity of escape responses and highlights the potential for naïve reef fish to take into account both visual and olfactory threat cues simultaneously to optimise the amplitude of their kinematic responses to perceived risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号