首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose synthase‐like (CSL) proteins of glycosyltransferase family 2 (GT2) are believed to be involved in the biosynthesis of cell‐wall polymers. The CSL D sub‐family (CSLD) is common to all plants, but the functions of CSLDs remain to be elucidated. We report here an in‐depth characterization of a narrow leaf and dwarf1 (nd1) rice mutant that shows significant reduction in plant growth due to retarded cell division. Map‐based cloning revealed that ND1 encodes OsCSLD4, one of five members of the CSLD sub‐family in rice. OsCSLD4 is mainly expressed in tissues undergoing rapid growth. Expression of OsCSLD4 fluorescently tagged at the C‐ or N‐terminus in rice protoplast cells or Nicotiana benthamiana leaves showed that the protein is located in the endoplasmic reticulum or Golgi vesicles. Golgi localization was verified using phenotype‐rescued transgenic plants expressing OsCSLD4–GUS under the control of its own promoter. Two phenotype‐altered tissues, culms and root tips, were used to investigate the specific wall defects. Immunological studies and monosaccharide compositional and glycosyl linkage analyses explored several wall compositional effects caused by disruption of OsCSLD4, including alterations in the structure of arabinoxylan and the content of cellulose and homogalacturonan, which are distinct in the monocot grass species Oryza sativa (rice). The inconsistent alterations in the two tissues and the observable structural defects in primary walls indicate that OsCSLD4 plays important roles in cell‐wall formation and plant growth.  相似文献   

2.
Hu  Huizhen  Zhang  Ran  Tang  Yiwei  Peng  Chenglang  Wu  Leiming  Feng  Shengqiu  Chen  Peng  Wang  Yanting  Du  Xuezhu  Peng  Liangcai 《Plant molecular biology》2019,101(4-5):389-401
Key message

Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production.

Abstract

Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.

  相似文献   

3.
The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5oC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.  相似文献   

4.
Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.

Intragenic complementation reveals that Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 multimers facilitate root hair development.  相似文献   

5.
6.
The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis.  相似文献   

7.
The functional elucidation of plant cell wall biosynthesis (CWB) related genes is important for understanding various stress tolerance responses as well as enhancing biomass in plants. Despite their significant role in physiology and growth of the plant, the function of a limited number of CWB related genes have been identified. Major obstacles such as functional redundancy and limited functional information pose challenges in the characterization of CWB genes. Here, a genome-wide analysis of CWB genes using meta-expression data revealed their roles in stress tolerance and developmental processes. The identification of coexpressed CWB genes suggests functional modules for plant cell wall biosynthesis associated with specific tissue types, biotic stress, abiotic stress, and hormone responses. More interestingly, we identified that glycosyl hydrolases are specialized for root and pollen development, glycosyltransferases for ubiquitous function and leaf development, and carbohydrate esterases for pollen development. A T-DNA insertional mutant of OsCESA9 showing internode preferred expression revealed severe dwarfism and a co-expression network analysis of OsCESA9 in oscesa9 mutant suggest downstream pathways for secondary cell wall biosynthesis and DNA repair processes. Data from our studies will facilitate functional genomic studies of CWB genes in rice and contribute to the enhancement of biomass and yield in crop plants.  相似文献   

8.
木葡聚糖(XyG)是一种存在于所有陆生植物细胞壁中的基质多糖, 是双子叶植物初生细胞壁中含量(20%-25%, w/w)最丰富的半纤维素成分。作为细胞壁的组分, XyG不仅与植物的生长发育密切相关, 还在植物抵抗各种生物和非生物逆境过程中发挥重要作用。XyG代谢相关基因主要通过改变植物细胞壁的组成以及对细胞壁进行重排进而改变细胞壁的弹性/硬度等特性, 影响植物的抗逆性。XyG及其寡糖也可能作为信号分子, 或与其它信号分子协同作用应对逆境胁迫。该文概述了XyG的结构与类型及参与XyG生物合成与降解的相关基因, 重点阐述XyG相关基因应答生物和非生物胁迫的作用机制。  相似文献   

9.
The cell wall plays important roles in plant architecture and morphogenesis. The cellulose synthase-like super-families were reported to contain glycosyltransferases motif and are required for the biosynthesis of cell wall polysaccharides. Here, we describe a curled leaf and dwarf mutant, cd1, in rice, which exhibits multiple phenotypic traits such as the reduction of plant height and leaf width, curled leaf morphology and a decrease in the number of grains and in the panicle length. Map-based cloning indicates that a member of the cellulose synthase-like D (CSLD) group is a candidate for OsCD1. RNAi transgenic plants with the candidate CSLD gene display a similar phenotype to the cd1 mutant, suggesting that OsCD1 is a member of the CSLD sub-family. Furthermore, sequence analysis indicates that OsCD1 contains the common D,D,D,QXXRW motif, which is a feature of the cellulose synthase-like super-family. Analysis of OsCD1 promoter with GUS fusion expression shows that OsCD1 exhibits higher expression in young meristem tissues such as fresh roots, young panicle and stem apical meristem. Cell wall composition analysis reveals that cellulose content and the level of xylose are significantly reduced in mature culm owing to loss of OsCD1 function. Take together, the work presented here is useful for expanding the understanding of cell wall biosynthesis.  相似文献   

10.
Changes in cell wall polysaccharides associated with growth   总被引:11,自引:10,他引:1       下载免费PDF全文
Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated.  相似文献   

11.
Maintenance of mating cell integrity requires the adhesin Fig2p   总被引:3,自引:0,他引:3       下载免费PDF全文
Fungal adhesins represent a large family of serine/threonine-rich secreted glycoproteins. Adhesins have been shown to play roles in heterotypic and homotypic cell-cell adhesion processes, morphogenetic pathways and invasive/pseudohyphal growth, frequently in response to differentiation cues. Here we address the role of the Saccharomyces cerevisiae mating-specific adhesin Fig2p. Cells lacking FIG2 possess a variety of mating defects that relate to processes involving the cell wall, including morphogenetic defects, cell fusion defects, and alterations in agglutination activities. We found that mating-specific morphogenetic defects caused by the absence of FIG2 are suppressible by increased external osmolarity and that, during mating, fig2Δ cells display reduced viability relative to wild-type cells. These defects result from alterations in signaling activated by the mating and cell integrity pathways. Finally, we show that fig2Δ zygotes also have defects in zygotic spindle positioning that are osmoremedial, whereas the requirements for FIG2 in normal cell-cell agglutination and cell fusion during mating are insensitive to changes in the extracellular osmotic environment. We conclude that FIG2 performs distinct functions in the mating cell wall that are separable with respect to their ability to be suppressed by changes in external osmolarity and that a fundamental role of FIG2 in mating cells is the maintenance of cell integrity.  相似文献   

12.
Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth.  相似文献   

13.
In sexually reproducing plants, the meiocyte-producing archesporal cell lineage is maintained at the diploid state to consolidate the formation of haploid gametes. In search of molecular factors that regulate this ploidy consistency, we isolated an Arabidopsis thaliana mutant, called enlarged tetrad2 (et2), which produces tetraploid meiocytes through the stochastic occurrence of premeiotic endomitosis. Endomitotic polyploidization events were induced by alterations in cell wall formation, and similar cytokinetic defects were sporadically observed in other tissues, including cotyledons and leaves. ET2 encodes GLUCAN SYNTHASE-LIKE8 (GSL8), a callose synthase that mediates the deposition of callose at developing cell plates, root hairs, and plasmodesmata. Unlike other gsl8 mutants, in which defects in cell plate formation are seedling lethal, cytokinetic defects in et2 predominantly occur in flowers and have little effect on vegetative growth and development. Similarly, mutations in STEROL METHYLTRANSFERASE2 (SMT2), a major sterol biosynthesis enzyme, also lead to weak cytokinetic defects, primarily in the flowers. In addition, SMT2 allelic mutants also generate tetraploid meiocytes through the ectopic induction of premeiotic endomitosis. These observations demonstrate that appropriate callose and sterol biosynthesis are required for maintaining the ploidy level of the premeiotic germ lineage and that subtle defects in cytokinesis may lead to diploid gametes and polyploid offspring.  相似文献   

14.
Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.  相似文献   

15.
The cell wall of filamentous fungi, comprised of chitin, polysaccharide and glycoproteins, maintains the integrity of hyphae and protect them from defence responses by potential host plants. Here, we report that one polysaccharide deacetylase of Puccinia striiformis f. sp. tritici (Pst), Pst_13661, suppresses Bax‐induced cell death in plants and Pst_13661 is highly induced during early stages of the interaction between wheat and Pst. Importantly, the transgenic wheat expressing the RNA interference (RNAi) construct of Pst_13661 exhibits high resistance to major Pst epidemic races CYR31, CYR32 and CYR33 by inhibiting growth and development of Pst, indicating that Pst_13661 is an available pathogenicity factor and is a potential target for generating broad‐spectrum resistance breeding material of wheat. It forms a homo‐polymer and has high affinity for chitin and germ tubes of Pst compared with the control. Besides, Pst_13661 suppresses chitin‐induced plant defence in plants. Hence, we infer that Pst_13661 may modify the fungal cell wall to prevent recognition by apoplastic surveillance systems in plants. This study opens new approaches for developing durable disease‐resistant germplasm by disturbing the growth and development of fungi and develops novel strategies to control crop diseases.  相似文献   

16.
Cell wall-related nucleotide sugar transporters (NSTs) theoretically supply the cytosolic nucleotide sugars for glycosyltransferases (GTs) to carry out ploysaccharide synthesis and modification in the Golgi apparatus. However, the regulation of cell wall synthesis by NSTs remains undescribed. Recently, we have reported the functional characterization of Oryza sativa nucleotide sugar transport (Osnst1) mutant and its corresponding gene. OsNST1/BC14 is localized in the Golgi apparatus and transports UDP-glucose. This mutant provides us with a unique opportunity for evaluation of its broad impacts on cell wall structure and components. We previously examined cell wall composition of bc14 and wild type plants. Here, the spatial distribution of these cell wall alterations was analyzed by immunolabeling approach. Analysis of the sugar yield in different cell wall fractions indicated that this mutation improves the extractability of cell wall components. Field emission scanning electron microscopy further showed that the orientation of microfibrils in bc14 is irregular when compared to that in wild type. Therefore, this UDP-glucose transporter, making substrates available for polysaccharide biosynthesis, plays a critical role in maintaining cell wall integrity.Key words: UDP-glucose transporter, Golgi apparatus, cell wall polysaccharides, xylan, riceNucleotide sugars mainly generated in cytosol are the substrates for the synthesis of cell wall polysaccharides. Supply of nucleotide sugars is thus a key level for regulation of cell wall components and structure. Mutation in MUR1, an isoform of GDP-D-mannose-4,6-dehydratase, causes reduced amount of GDP-fucose and abnormal xyloglucan structure.1,2 Disturbance of UDP-rhamnose synthesis via the mutation in RHM2/MUM4 decreases the rhamnogalacturonan I contents in Arabidopsis seeds. Cellulose synthase catalytic subunits (CESAs) generally use cytosolic UDP-glucoses to synthesize cellulose on the plasma membrane. UDP-glucose can be produced either via the catalysis of sucrose by sucrose synthase (SuSy) or through the phosphorylation of glucose-1-phosphate by UDP-glucose pyrophosphorylase (UGPase).3 Suppression of SuSy function in cotton inhibited fiber initiation and elongation.4 For the synthesis of noncellulosic polysaccharides occurring inside the Golgi lumen, the cytosolic nucleotide sugars should be translocated inwards by Golgi nucleotide sugar transporters (NSTs).5 However, this hypothesis remains to be confirmed, although transport activities have been identified in some plant NSTs.610 Altering the precursor supply may also affect the overall carbon allocation in plants. It is reasonable that substrate regulation often causes pleiotropic effects on cell wall biosynthesis and plant growth. Without genetic resources or mutants on cell wall related NST, the exact evaluation of NSTs'' impacts on cell wall structure and composition is largely delayed. Until recently, we identified a Golgi-localized transporter OsNST1 mutant in rice. This transporter has been found to supply UDP-glucose for the formation of matrix polysaccharides, thereby modulating cellulose biosynthesis.11 Here, we examine these alterations of cell wall polymers at the cellular level. The orientation of cellulose microfibrils and extractability of wall polysaccharides were also compared between the mutant and wild type. All those further our understandings of the functions of NSTs and the synergetic synthesis of different polymers.  相似文献   

17.
Proline-rich proteins contribute to cell wall structure of specific cell types and are involved in plant growth and development. In this study, a fiber-specific gene, GhPRP5, encoding a proline-rich protein was functionally characterized in cotton. GhPRP5 promoter directed GUS expression only in trichomes of both transgenic Arabidopsis and tobacco plants. The transgenic Arabidopsis plants with overexpressing GhPRP5 displayed reduced cell growth, resulting in smaller cell size and consequently plant dwarfs, in comparison with wild type plants. In contrast, knock-down of GhPRP5 expression by RNA interference in cotton enhanced fiber development. The fiber length of transgenic cotton plants was longer than that of wild type. In addition, some genes involved in fiber elongation and wall biosynthesis of cotton were up-regulated or down-regulated in the transgenic cotton plants owing to suppression of GhPRP5. Collectively, these data suggested that GhPRP5 protein as a negative regulator participates in modulating fiber development of cotton.  相似文献   

18.
Cellulose Synthase Like (CSL) proteins are a group of plant glycosyltransferases that are predicted to synthesize β-1,4-linked polysaccharide backbones. CSLC, CSLF and CSLH families have been confirmed to synthesize xyloglucan and mixed linkage β-glucan, while CSLA family proteins have been shown to synthesize mannans. The polysaccharide products of the five remaining CSL families have not been determined. Five CSLD genes have been identified in Arabidopsis thaliana and a role in cell wall biosynthesis has been demonstrated by reverse genetics. We have extended past research by producing a series of double and triple Arabidopsis mutants and gathered evidence that CSLD2, CSLD3 and CSLD5 are involved in mannan synthesis and that their products are necessary for the transition between early developmental stages in Arabidopsis. Moreover, our data revealed a complex interaction between the three glycosyltransferases and brought new evidence regarding the formation of non-cellulosic polysaccharides through multimeric complexes.Key words: mannan, mannose, plant cell wall, glycosyltransferase, cellulose synthase like, CSL, biosynthesis, hemicelluloseThe plant cell wall is mainly composed of polysaccharides, which are often grouped into cellulose, hemicelluloses and pectin. Since the discovery of the first cellulose synthase (CESA) genes in cotton fibers,1 the synthesis of cellulose has been extensively studied.2 In contrast, the glycosyltransferases responsible for synthesizing hemicelluloses and pectin are still largely unidentified.3,4,5 The CESA genes are members of a superfamily that includes genes with a high sequence similarity with CESA genes and are named Cellulose Synthase Like (CSL).6 The CSL genes have themselves been grouped into nine families designated CSLA, -B, -C, -D, -E, -F, -G, -H and -J (Figure 1A).5,6 Mannan and glucomannan synthase activity has been demonstrated in the CSLA family,7,8,9 while members of the CSLC family have been implicated in synthesis of the xyloglucan backbone.10 CSLF and CSLH, which are found only in grasses, are involved in synthesis of mixed linkage glucan.11,12 The function of the remaining CSL families has not been determined. We have reported our research on the CSLD family in a recent publication.13 Of all the CSL families, CSLD possesses the most ancient intron/exon structure and is the most similar to the CESA family.6 CSLD genes are found in all sequenced genomes of terrestrial plants including Physcomitrella and Selaginella suggesting a highly conserved function throughout the plant kingdom (Figure 1A). Five genes (CSLD1 to CSLD5) and one apparent pseudogene (CSLD6) have been identified in Arabidopsis thaliana.14 Bernal et al.14,15 studied knock-out mutants of the individual genes and presented evidence for a role in cell wall biosynthesis for each Arabidopsis CSLD. To elucidate the activity of the CSLD proteins and obtain further understanding of their biological role, we generated double mutants csld2/csld3, csld2/csld5, csld3/csld5 and the triple mutant csld2/csld3/csld5. Immunochemical, biochemical and complementation assays brought evidence that CSLD5 or CSLD2 in concomitance with CSLD3 act as mannan synthases.Open in a separate windowFigure 1(A) Schematic representation of the CESA superfamily phylogeny. The inset on the right is a detailed phylogenetic tree of CSLDs from Selaginella moellendorffii, Arabidopsis thaliana and Oryza sativa. The figure is modified from Ulvskov and Scheller.5 (B) Comparison of csld2, csld3, csld5 with Col-0 20 days after germination. The inflorescences of csld2 and csld3 were similar to Col-0 whereas csld5 had a delayed growth. Scale bar: 1 cm. (C) Col-0 and csld2/csld3/csld5 (triple mutant, TM) 40 days after germination. After 40 days, the triple mutant was barely developed and, as shown in the magnified inset, displayed purple coloration indicating accumulation of anthocyanins, a typical stress response. Scale bar: 2 mm.  相似文献   

19.
The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号