首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca2+ leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) “tags” placed within N-terminal (amino acid residues 76–619) or central (residues 2157–2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.  相似文献   

2.
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.  相似文献   

3.
The NH2-terminal region (residues 1–543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca2+ release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca2+ release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca2+-induced Ca2+ release and store overload-induced Ca2+ release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca2+ release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca2+ activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca2+ activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca2+ activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.  相似文献   

4.
We have detected directly the interactions of sarcolipin (SLN) and the sarcoplasmic reticulum Ca-ATPase (SERCA) by measuring fluorescence resonance energy transfer (FRET) between fusion proteins labeled with cyan fluorescent protein (donor) and yellow fluorescent protein (acceptor). SLN is a membrane protein that helps control contractility by regulating SERCA activity in fast-twitch and atrial muscle. Here we used FRET microscopy and spectroscopy with baculovirus expression in insect cells to provide direct evidence for: 1) oligomerization of SLN and 2) regulatory complex formation between SLN and the fast-twitch muscle Ca-ATPase (SERCA1a isoform). FRET experiments demonstrated that SLN monomers self-associate into dimers and higher order oligomers in the absence of SERCA, and that SLN monomers also bind to SERCA monomers in a 1:1 binary complex when the two proteins are coexpressed. FRET experiments further demonstrated that the binding affinity of SLN for itself is similar to that for SERCA. Mutating SLN residue isoleucine-17 to alanine (I17A) decreased the binding affinity of SLN self-association and converted higher order oligomers into monomers and dimers. The I17A mutation also decreased SLN binding affinity for SERCA but maintained 1:1 stoichiometry in the regulatory complex. Thus, isoleucine-17 plays dual roles in determining the distribution of SLN homo-oligomers and stabilizing the formation of SERCA-SLN heterodimers. FRET results for SLN self-association were supported by the effects of SLN expression in bacterial cells. We propose that SLN exists as multiple molecular species in muscle, including SERCA-free (monomer, dimer, oligomer) and SERCA-bound (heterodimer), with transmembrane zipper residues of SLN serving to stabilize oligomeric interactions.  相似文献   

5.
Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K+-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K+ channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G4864LIIDA4869 in RyR2) analogous to the glycine hinge motif present in many K+ channels. Gating in these K+ channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K+ channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K+ channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.  相似文献   

6.
The ryanodine receptor/Ca2+-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca2+ release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca2+ channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in “hot spot” regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca2+ release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca2+-ATPase 1A and the α1S subunit of the L-type Ca2+ channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca2+ flux in skeletal muscle that mediates excitation-contraction coupling.  相似文献   

7.
Allosteric modulators have been identified for several G protein-coupled receptors, most notably muscarinic receptors. To study their mechanism of action, we made use of a recently developed technique to generate fluorescence resonance energy transfer (FRET)-based sensors to monitor G protein-coupled receptor activation. Cyan fluorescent protein was fused to the C terminus of the M2 muscarinic receptor, and a specific binding sequence for the small fluorescent compound fluorescein arsenical hairpin binder, FlAsH, was inserted into the third intracellular loop; the latter site was labeled in intact cells by incubation with FlAsH. We then measured FRET between the donor cyan fluorescent protein and the acceptor FlAsH in intact cells and monitored its changes in real time. Agonists such as acetylcholine and carbachol induced rapid changes in FRET, indicative of agonist-induced conformational changes. Removal of the agonists or addition of an antagonist caused a reversal of this signal with rate constants between 400 and 1100 ms. The allosteric ligands gallamine and dimethyl-W84 caused no changes in FRET when given alone, but increased FRET when given in the presence of an agonist, compatible with an inactivation of the receptors. The kinetics of these effects were very rapid, with rate constants of 80–100 ms and ≈200 ms for saturating concentrations of gallamine and dimethyl-W84, respectively. Because these speeds are significantly faster than the responses to antagonists, these data indicate that gallamine and dimethyl-W84 are allosteric ligands and actively induce a conformation of the M2 receptor with a reduced affinity for its agonists.  相似文献   

8.
Homodimeric H+-pyrophosphatase (H+-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel H+-PPase supplies energy at the expense of hydrolyzing metabolic byproduct, pyrophosphate (PPi), for H+ translocation across membrane. The functional unit for the translocation is considered to be a homodimer. Its putative active site on each subunit consists of PPi binding motif, Acidic I and II motifs, and several essential residues. In this investigation structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H+-PPase are 49.3 ± 4.0 and 67.2 ± 5.7 Å, respectively. Furthermore, putative PPi binding motifs on individual subunits are found to be relatively far away from each other (70.8 ± 4.8 Å), whereas binding of potassium and substrate analogue led them to closer proximity. Moreover, substrate analogue but not potassium elicits significant distance variations between two Acidic I motifs and two His-622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues, and putative active sites on homodimeric subunits of H+-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H+-PPase upon substrate binding.  相似文献   

9.
FRET is a process whereby energy is non-radiatively transferred from an excited donor molecule to a ground-state acceptor molecule through long-range dipole-dipole interactions1. In the present sensing assay, we utilize an interesting property of PDA: blue-shift in the UV-Vis electronic absorption spectrum of PDA (Figure 1) after an analyte interacts with receptors attached to PDA2,3,4,7. This shift in the PDA absorption spectrum provides changes in the spectral overlap (J) between PDA (acceptor) and rhodamine (donor) that leads to changes in the FRET efficiency. Thus, the interactions between analyte (ligand) and receptors are detected through FRET between donor fluorophores and PDA. In particular, we show the sensing of a model protein molecule streptavidin. We also demonstrate the covalent-binding of bovine serum albumin (BSA) to the liposome surface with FRET mechanism. These interactions between the bilayer liposomes and protein molecules can be sensed in real-time. The proposed method is a general method for sensing small chemical and large biochemical molecules. Since fluorescence is intrinsically more sensitive than colorimetry, the detection limit of the assay can be in sub-nanomolar range or lower8. Further, PDA can act as a universal acceptor in FRET, which means that multiple sensors can be developed with PDA (acceptor) functionalized with donors and different receptors attached on the surface of PDA liposomes.  相似文献   

10.
Ryanodine receptor types 1 (RyR1) and 2 (RyR2) are calcium release channels that are highly enriched in skeletal and cardiac muscle, respectively, where they play an essential role in excitation-contraction coupling. Apocalmodulin (apo-CaM) weakly activates RyR1 but inhibits RyR2, whereas Ca(2+)-calmodulin inhibits both isoforms. Previous cryo-EM studies showed distinctly different binding locations on RyR1 for the two states of CaM. However, recent studies employing FRET appear to challenge these findings. Here, using cryo-EM, we have determined that a CaM mutant that is incapable of binding calcium binds to RyR1 at the apo site, regardless of the calcium concentration. We have also re-determined the location of RyR1-bound Ca(2+)-CaM using uniform experimental conditions. Our results show the existence of the two overlapping but distinct binding sites for CaM in RyR1 and imply that the binding location switch is due to Ca(2+) binding to CaM, as opposed to direct effects of Ca(2+) on RyR1. We also discuss explanations that could resolve the apparent conflict between the cryo-EM and FRET results. Interestingly, apo-CaM binds to RyR2 at a similar binding location to that of Ca(2+)-CaM on RyR1, in seeming agreement with the inhibitory effects of these two forms of CaM on their respective receptors.  相似文献   

11.
Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane.  相似文献   

12.
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M2 muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M2 receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M2 receptor to enhanced green fluorescent protein-M2 receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 ± 0.019; n = 4, 0.202 ± 0.010; n = 6, 0.128 ± 0.006; n = 8, 0.093 ± 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20–0.24, identifying the M2 receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.  相似文献   

13.
The skeletal muscle dihydropyridine receptor (DHPR) in the t-tubular membrane serves as the Ca2+ channel and voltage sensor for excitation-contraction (EC) coupling, triggering Ca2+ release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR). The two proteins appear to be physically linked, and both the α1S and β1a subunits of the DHPR are essential for EC coupling. Within α1S, cytoplasmic domains of importance include the I-II loop (to which β1a binds), the II-III and III-IV loops, and the C terminus. However, the spatial relationship of these domains to one another has not been established. Here, we have taken the approach of measuring FRET between fluorescent proteins inserted into pairs of α1S cytoplasmic domains. Expression of these constructs in dyspedic (RyR1 null) and dysgenic (α1S null) myotubes was used to test for function and targeting to plasma membrane/SR junctions and to test whether the presence of RyR1 caused altered FRET. We found that in the absence of RyR1, measureable FRET occurred between the N terminus and C terminus (residue 1636), and between the II-III loop (residue 626) and both the N and C termini; the I-II loop (residue 406) showed weak FRET with the II-III loop but not with the N terminus. Association with RyR1 caused II-III loop FRET to decrease with the C terminus and increase with the N terminus and caused I-II loop FRET to increase with both the II-III loop and N terminus. Overall, RyR1 appears to cause a substantial reorientation of the cytoplasmic α1S domains consistent with their becoming more closely packed.  相似文献   

14.
The organellar targeting of two-pore channels (TPCs) and their capacity to associate as homo- and heterodimers may be critical to endolysosomal signaling. A more detailed understanding of the functional association of vertebrate TPC1–3 is therefore necessary. We report here that when stably expressed in HEK293 cells, human (h) TPC1 and chicken (c) TPC3 were specifically targeted to different subpopulations of endosomes, hTPC2 was specifically targeted to lysosomes, and rabbit (r) TPC3 was specifically targeted to both endosomes and lysosomes. Intracellular dialysis of NAADP evoked a Ca2+ transient in HEK293 cells that stably overexpressed hTPC1, hTPC2, and rTPC3, but not in cells that stably expressed cTPC3. The Ca2+ transients induced in cells that overexpressed endosome-targeted hTPC1 were abolished upon depletion of acidic Ca2+ stores by bafilomycin A1, but remained unaffected following depletion of endoplasmic reticulum stores by thapsigargin. In contrast, Ca2+ transients induced via lysosome-targeted hTPC2 and endolysosome-targeted rTPC3 were abolished by bafilomycin A1 and markedly attenuated by thapsigargin. NAADP induced marked Ca2+ transients in HEK293 cells that stably coexpressed hTPC2 with hTPC1 or cTPC3, but failed to evoke any such response in cells that coexpressed interacting hTPC2 and rTPC3 subunits. We therefore conclude that 1) all three TPC subtypes may support Ca2+ signaling from their designate acidic stores, and 2) lysosome-targeted (but not endosome-targeted) TPCs support coupling to the endoplasmic reticulum.  相似文献   

15.
Flp-InTM T-RExTM 293 cells expressing a wild type human M3 muscarinic acetylcholine receptor construct constitutively and able to express a receptor activated solely by synthetic ligand (RASSL) form of this receptor on demand maintained response to the muscarinic agonist carbachol but developed response to clozapine N-oxide only upon induction of the RASSL. The two constructs co-localized at the plasma membrane and generated strong ratiometric fluorescence resonance energy transfer (FRET) signals consistent with direct physical interactions. Increasing levels of induction of the FRET donor RASSL did not alter wild type receptor FRET-acceptor levels substantially. However, ratiometric FRET was modulated in a bell-shaped fashion with maximal levels of the donor resulting in decreased FRET. Carbachol, but not the antagonist atropine, significantly reduced the FRET signal. Cell surface homogeneous time-resolved FRET, based on SNAP-tag technology and employing wild type and RASSL forms of the human M3 receptor expressed stably in Flp-InTM TRExTM 293 cells, also identified cell surface dimeric/oligomeric complexes. Now, however, signals were enhanced by appropriate selective agonists. At the wild type receptor, large increases in FRET signal to carbachol and acetylcholine were concentration-dependent with EC50 values consistent with the relative affinities of the two ligands. These studies confirm the capacity of the human M3 muscarinic acetylcholine receptor to exist as dimeric/oligomeric complexes at the surface of cells and demonstrate that the organization of such complexes can be modified by ligand binding. However, conclusions as to the effect of ligands on such complexes may depend on the approach used.  相似文献   

16.
Sarco/endoplasmic reticulum (SR/ER) Ca(2+)-ATPase (SERCA) is an intracellular Ca(2+) pump localized on the SR/ER membrane. The role of SERCA in refilling intracellular Ca(2+) stores is pivotal for maintaining intracellular Ca(2+) homeostasis, and disturbed SERCA activity causes many disease phenotypes, including heart failure, diabetes, cancer, and Alzheimer disease. Although SERCA activity has been described using a simple enzyme activity equation, the dynamics of SERCA activity in living cells is still unknown. To monitor SERCA activity in living cells, we constructed an enhanced CFP (ECFP)- and FlAsH-tagged SERCA2a, designated F-L577, which retains the ATP-dependent Ca(2+) pump activity. The FRET efficiency between ECFP and FlAsH of F-L577 is dependent on the conformational state of the molecule. ER luminal Ca(2+) imaging confirmed that the FRET signal changes directly reflect the Ca(2+) pump activity. Dual imaging of cytosolic Ca(2+) and the FRET signals of F-L577 in intact COS7 cells revealed that SERCA2a activity is coincident with the oscillatory cytosolic Ca(2+) concentration changes evoked by ATP stimulation. The Ca(2+) pump activity of SERCA2a in intact cells can be expressed by the Hill equation with an apparent affinity for Ca(2+) of 0.41 ± 0.0095 μm and a Hill coefficient of 5.7 ± 0.73. These results indicate that in the cellular environment the Ca(2+) dependence of ATPase activation is highly cooperative and that SERCA2a acts as a rapid switch to refill Ca(2+) stores in living cells for shaping the intracellular Ca(2+) dynamics. F-L577 will be useful for future studies on Ca(2+) signaling involving SERCA2a activity.  相似文献   

17.
To determine the structural and regulatory role of the C-terminal residues of phospholamban (PLB) in the membranes of living cells, we fused fluorescent protein tags to PLB and sarco/endoplasmic reticulum calcium ATPase (SERCA). Alanine substitution of PLB C-terminal residues significantly altered fluorescence resonance energy transfer (FRET) from PLB to PLB and SERCA to PLB, suggesting a change in quaternary conformation of PLB pentamer and SERCA-PLB regulatory complex. Val to Ala substitution at position 49 (V49A) had particularly large effects on PLB pentamer structure and PLB-SERCA regulatory complex conformation, increasing and decreasing probe separation distance, respectively. We also quantified a decrease in oligomerization affinity, an increase in binding affinity of V49A-PLB for SERCA, and a gain of inhibitory function as quantified by calcium-dependent ATPase activity. Notably, deletion of only a few C-terminal residues resulted in significant loss of PLB membrane anchoring and mislocalization to the cytoplasm and nucleus. C-terminal truncations also resulted in progressive loss of PLB-PLB FRET due to a decrease in the apparent affinity of PLB oligomerization. We quantified a similar decrease in the binding affinity of truncated PLB for SERCA and loss of inhibitory potency. However, despite decreased SERCA-PLB binding, intermolecular FRET for Val49-stop (V49X) truncation mutant was paradoxically increased as a result of an 11.3-Å decrease in the distance between donor and acceptor fluorophores. We conclude that PLB C-terminal residues are critical for localization, oligomerization, and regulatory function. In particular, the PLB C terminus is an important determinant of the quaternary structure of the SERCA regulatory complex.  相似文献   

18.
The disease risk and age of onset of Huntington disease (HD) and nine other repeat disorders strongly depend on the expansion of CAG repeats encoding consecutive polyglutamines (polyQ) in the corresponding disease protein. PolyQ length-dependent misfolding and aggregation are the hallmarks of CAG pathologies. Despite intense effort, the overall structure of these aggregates remains poorly understood. Here, we used sensitive time-dependent fluorescent decay measurements to assess the architecture of mature fibrils of huntingtin (Htt) exon 1 implicated in HD pathology. Varying the position of the fluorescent labels in the Htt monomer with expanded 51Q (Htt51Q) and using structural models of putative fibril structures, we generated distance distributions between donors and acceptors covering all possible distances between the monomers or monomer dimensions within the polyQ amyloid fibril. Using Monte Carlo simulations, we systematically scanned all possible monomer conformations that fit the experimentally measured decay times. Monomers with four-stranded 51Q stretches organized into five-layered β-sheets with alternating N termini of the monomers perpendicular to the fibril axis gave the best fit to our data. Alternatively, the core structure of the polyQ fibrils might also be a zipper layer with antiparallel four-stranded stretches as this structure showed the next best fit. All other remaining arrangements are clearly excluded by the data. Furthermore, the assessed dimensions of the polyQ stretch of each monomer provide structural evidence for the observed polyQ length threshold in HD pathology. Our approach can be used to validate the effect of pharmacological substances that inhibit or alter amyloid growth and structure.  相似文献   

19.
The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca2+ from the endoplasmic reticulum (ER), lowering [Ca2+] in the ER and thereby activating the Ca2+-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca2+] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca2+ buffer that lowers [Ca2+] in the ER similar to the effect of 3O-C12 also increased cAMP and ICl. The results suggest that 3O-C12 stimulates CFTR-dependent Cl and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca2+] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl and fluid secretion.  相似文献   

20.
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号