首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Hydrogen sulfide (H2S) has recently been shown to play an important role in the digestive system, but the role of endogenous H2S produced locally in the gallbladder is unknown. The aim of this study was to investigate whether gallbladder possesses the enzymatic machinery to synthesize H2S, and whether H2S synthesis is changed in gallbladder inflammation during acute acalculous cholecystitis (AC).

Methods

Adult male guinea pigs underwent either a sham operation or common bile duct ligation (CBDL). One, two, or three days after CBDL, the animals were sacrificed separately. Hematoxylin and eosin-stained slides of gallbladder samples were scored for inflammation. H2S production rate in gallbladder tissue from each group was determined; immunohistochemistry and western blotting were used to determine expression levels of the H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in gallbladder.

Results

There was a progressive inflammatory response after CBDL. Immunohistochemistry analysis showed that CBS and CSE were expressed in the gallbladder epithelium, muscular layer, and blood vessels and that the expression increased progressively with increasing inflammation following CBDL. The expression of CBS protein as well as the H2S-production rate was significantly increased in the animals that underwent CBDL, compared to those that underwent the sham operation.

Conclusions

Both CBS and CSE are expressed in gallbladder tissues. The expression of these enzymes, as well as H2S synthesis, was up-regulated in the context of inflammation during AC.  相似文献   

2.
Gordeeva  A. E.  Kurganova  E. A.  Novoselov  V. I. 《Biophysics》2021,66(5):840-847
Biophysics - Oxidative stress caused by ischemia–reperfusion kidney injury may play a key role in liver dysfunction. To reduce liver and kidney damage in ischemia–reperfusion kidney...  相似文献   

3.
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5′-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.  相似文献   

4.
5.
Russian Journal of Developmental Biology - Expression of cystathionine β-synthase (CBS) in the brain of adult trout under normal conditions and 1 week after an eye injury was assessed using...  相似文献   

6.
Human cystathionine β-synthase (CBS) catalyzes a pyridoxal 5′-phosphate (PLP) dependent β-replacement reaction to synthesize cystathionine from serine and homocysteine. The enzyme is unique in bearing not only a catalytically important PLP but also heme. In order to study a regulatory process mediated by heme, we performed mutagenesis of Arg-51 and Arg-224, which have hydrogen-bonding interactions with propionate side chains of the prosthetic group. It was found that the arginine mutations decrease CBS activity by approximately 50%. The results indicate that structural changes in the heme vicinity are transmitted to PLP existing 20 Å away from heme. A possible explanation of our results is discussed on the basis of CBS structure.  相似文献   

7.
8.
9.
10.
11.
12.
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2) reduction by Fe(II)-CBS to form Fe(II)NO-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO and peroxynitrite.  相似文献   

13.
Remote ischemic preconditioning (IP) is a potential renoprotective strategy. However, there has been no demonstrated result in large animals and the role of time window in remote IP remains to be defined. Using a single-kidney porcine model, we evaluated organ protective function of remote IP in renal ischemia reperfusion injury. Fifteen Yorkshire pigs, 20 weeks old and weighing 35–38 kg were used. One week after left nephrectomy, we performed remote IP (clamping right external iliac artery, 2 cycles of 10 minutes) and right renal artery clamping (warm ischemia; 90 minutes). The animals were randomly divided into three groups: control group, warm ischemia without IP; group 1 (remote IP with early window [IP-E]), IP followed by warm ischemia with a 10-minute time window; and group 2 (remote IP with late window [IP-L]), IP followed by warm ischemia after a 24-hour time window. There were no differences in serum creatinine changes between groups. The IP-L group had lower urinary neutrophil gelatinase-associated lipocalin than control and IP-E at 72 hours post-ischemia. At 72 hours post-ischemia, the urinary kidney injury molecule-1 (KIM-1) was lower in the IP-L group than in the control and IP-E groups, and the IP-L group KIM-1 was near pre-ischemic levels, whereas the control and IP-E group KIM-1 levels were rising. Microalbumin also tended to be lower in the IP-L group. Taken together, remote IP showed a significant reduction in renal injury biomarkers from ischemia reperfusion injury. To effectively provide kidney protection, remote IP might require a considerable, rather than short, time window of ischemia.  相似文献   

14.
15.
Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P1,Pn-diadenosine 5′-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ∼10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.  相似文献   

16.
17.
18.
19.
20.
It has been well proved that acute inflammatory response and hepatocellular apoptosis contributed to the pathogenesis of liver ischemia reperfusion (IR) injury. A vast amount of research has demonstrated that magnesium lithospermate B (MLB) has potent anti-apoptosis and potential anti-inflammatory pharmacological properties. However, it has not previously been examined whether MLB can attenuate hepatic IR injury. Firstly, the optimal dose of MLB to protect against hepatic IR injury was determined using hepatic IR model in mice. Then, the effect of MLB on IR-induced inflammatory response was detected in detail. We found that MLB exhibited protective effect from the beginning of 50 mg/kg and culminated at the doses of 100 and 200 mg/kg. The alanine aminotransferase and aspartate aminotransferase levels in MLB group were markedly decreased. Severe hepatocellular swelling/necrosis, sinusoidal/vascular congestion and inflammatory cell infiltration were seen and a large number of apoptotic cells were found in the liver samples from Saline group, while minimal damage and very few apoptotic cells were noted in the samples from MLB group. Kuppfer cells infiltration, myeloperoxidase activity and mRNA level of CD11b in MLB group was significantly decreased. Serum TNF-a and IL-6, and mRNA expression of CXCL-10 and ICAM-1 was markedly decreased in the samples from MLB group. Inflammatory signaling pathway activation was largely prevented in MLB group. MLB can significantly attenuate IR-induced hepatocellular damage and hepatocellular apoptosis by preventing inflammatory signaling pathways activation, inflammatory mediators expression and macrophage and neutrophil infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号