共查询到20条相似文献,搜索用时 0 毫秒
1.
Nicole Linka Frederica L. Theodoulou Richard P. Haslam Marc Linka Jonathan A. Napier H. Ekkehard Neuhaus Andreas P.M. Weber 《The Plant cell》2008,20(12):3241-3257
Several recent proteomic studies of plant peroxisomes indicate that the peroxisomal matrix harbors multiple ATP-dependent enzymes and chaperones. However, it is unknown whether plant peroxisomes are able to produce ATP by substrate-level phosphorylation or whether external ATP fuels the energy-dependent reactions within peroxisomes. The existence of transport proteins that supply plant peroxisomes with energy for fatty acid oxidation and other ATP-dependent processes has not previously been demonstrated. Here, we describe two Arabidopsis thaliana genes that encode peroxisomal adenine nucleotide carriers, PNC1 and PNC2. Both proteins, when fused to enhanced yellow fluorescent protein, are targeted to peroxisomes. Complementation of a yeast mutant deficient in peroxisomal ATP import and in vitro transport assays using recombinant transporter proteins revealed that PNC1 and PNC2 catalyze the counterexchange of ATP with ADP or AMP. Transgenic Arabidopsis lines repressing both PNC genes were generated using ethanol-inducible RNA interference. A detailed analysis of these plants showed that an impaired peroxisomal ATP import inhibits fatty acid breakdown during early seedling growth and other β-oxidation reactions, such as auxin biosynthesis. We show conclusively that PNC1 and PNC2 are essential for supplying peroxisomes with ATP, indicating that no other ATP generating systems exist inside plant peroxisomes.The β-oxidation of fatty acids, a process that exclusively occurs within peroxisomes in plants and yeast, plays an important role in storage oil mobilization to support seedling establishment of oilseed plants, such as Arabidopsis thaliana (Graham and Eastmond, 2002; Baker et al., 2006; Graham, 2008). Upon germination, fatty acids are released from storage oil triacylglycerol (TAG) by lipolysis, degraded via β-oxidation in specialized peroxisomes, termed glyoxysomes, and subsequently converted to sucrose, which drives growth and development until seedlings become photoautotrophic (Graham and Eastmond, 2002; Baker et al., 2006; Graham, 2008). Before the fatty acids can enter β-oxidation, they are imported into peroxisomes by a peroxisomal ATP binding cassette (ABC) transporter, variously known as CTS (COMATOSE), At PXA1 (Arabidopsis peroxisomal ABC transporter), or PED3 (peroxisomal defective 3) and hereafter referred to as CTS (Zolman et al., 2001; Footitt et al., 2002; Hayashi et al., 2002). Subsequently, the imported fatty acids are activated by esterification to CoA. This ATP-dependent reaction within peroxisomes is catalyzed by long-chain acyl-CoA synthetases 6 and 7 (LACS6 and LACS7, respectively), which are named according to their substrate specificity for long-chain fatty acids, which are significant components of seed storage oil in Arabidopsis (Fulda et al., 2002, 2004).In Saccharomyces cerevisiae, two mechanisms exist for import and activation of fatty acids, depending on chain length (Hettema et al., 1996). Long-chain fatty acids (C16 and C18) are converted to acyl-CoA esters in the cytosol prior to transport by the heterodimeric peroxisomal ABC transporter, Pxa1p/Pxa2 (Hettema et al., 1996). By contrast, short- and medium-chain fatty acids (≤C14) that enter the peroxisomes by passive diffusion or by an unknown transport protein are activated within peroxisomes (Hettema et al., 1996). The possibility cannot be excluded, though, that CTS imports the corresponding CoA derivatives, as is the case for the yeast Pxa1p/Pxa2p heterodimer (Hettema et al., 1996; Verleur et al., 1997), implicating a cytosolic activation of the fatty acids, catalyzed by a hitherto unknown enzyme. The actual substrates transported by CTS in Arabidopsis have not yet been experimentally determined (Theodoulou et al., 2006). However, the sucrose-dependent seedling growth phenotype of the lacs6 lacs7 double knockout mutant demonstrated that peroxisomal activation is essential for lipid mobilization to provide energy for early seedling growth (Fulda et al., 2004). The lacs6 lacs7 mutant is impaired in the degradation of fatty acids, leading to growth arrest shortly after germination (Fulda et al., 2004).Besides fatty acid mobilization, β-oxidation is also involved in generation of signaling molecules, such as the phytohormones auxin and fatty acid–derived jasmonic acid (JA) (Zolman et al., 2000; Schaller et al., 2004; Delker et al., 2007). By analogy to fatty acids released from storage oil, the precursors of these signaling molecules require CoA esterification before they can enter β-oxidation (Baker et al., 2006; Goepfert and Poirier, 2007). While the enzymes responsible for ATP-dependent activation of natural auxin (indole butyric acid [IBA]) and proherbicide 2,4-dichlorophenoxybutyric acid (2,4-DB) are currently unknown, several enzymes belonging to the acyl-activating enzyme (AAE) family have been implicated in jasmonate biosynthesis (Schneider et al., 2005; Koo et al., 2006; Kienow et al., 2008). Moreover, several as yet uncharacterized members of the large AAE family carry a putative peroxisome targeting signal (PTS) and thus might be good candidates to activate the additional β-oxidation substrates within peroxisomes (Shockey et al., 2002, 2003).In the case where activation of fatty acids or other substrates takes place within peroxisomes, the question arises as to how these ATP-dependent reactions are supplied with ATP. It is currently unknown whether plant peroxisomes are able to produce ATP by substrate-level phosphorylation or whether they depend on external ATP to supply energy-dependent reactions within peroxisomes. So far, transport proteins that supply plant peroxisomes with energy for fatty acid oxidation have not been characterized. However, in bakers'' yeast, a peroxisomal adenine nucleotide transporter, ANT1, that is required for the ATP-dependent activation of medium-chain fatty acids inside peroxisomes has been characterized (Palmieri et al., 2001).ATP transport proteins play an important role in the distribution of the primary agent coupling endergonic and exergonic reactions in every cellular compartment (Winkler and Neuhaus, 1999). In Arabidopsis and other plants, various adenine nucleotide carriers have been identified at the molecular level. The mitochondrial ADP/ATP carrier mediates the export of ATP that is synthesized in the mitochondrion to provide energy for cellular metabolism (Heimpel et al., 2001; Haferkamp et al., 2002). The plastidial ATP/ADP transporter (nucleotide transporter) is involved in ATP uptake by both chloroplasts and heterotrophic plastids, to enable the nocturnal ATP supply required for chlorophyll biosynthesis (Reiser et al., 2004; Reinhold et al., 2007), as well as by heterotrophic plastids to drive starch biosynthesis (Batz et al., 1992; Tjaden et al., 1998). Yet another ATP/ADP antiporter located in the endoplasmic reticulum (ER) membrane provides energy by importing ATP into the ER for the accumulation of ER-related storage lipids and proteins (Leroch et al., 2008).In this study, we identified two novel peroxisomal adenine nucleotide carrier proteins (PNC1 and PNC2) from Arabidopsis. Colocalization studies demonstrated that these proteins are targeted to peroxisomes. Yeast complementation and in vitro ATP uptake assays showed that both PNC1 and PNC2 catalyze the counterexchange of ATP with AMP. Using an inducible RNA interference (RNAi) repression strategy, we further established several transgenic Arabidopsis lines with reduced expression levels of both PNC1 and PNC2. Our results showed that import of ATP into peroxisomes that is catalyzed by PNC1 and PNC2 is essential for activation of fatty acids during seedling germination and plays a role in other β-oxidation reactions in peroxisomes, such as auxin metabolism. Analysis of PNC1 and PNC2 repression lines further indicates that no other ATP generating systems exist inside plant peroxisomes and that ATP import is the only way to supply the peroxisomal matrix with ATP. 相似文献
2.
绒毡层在拟南芥花药花粉发育过程中具有重要作用,包括分泌降解胼胝质的胼胝质酶、为花粉壁的形成提供原料以及为小孢子发育提供营养物质.本文通过对拟南芥雄性不育突变体st273的分析,研究了ST273基因在花药花粉发育过程中的功能.st273是通过T-DNA插入诱变野生型拟南芥得到的一株突变体,遗传分析表明st273是单隐性核基因控制的.利用图位克隆的方法对不育基因ST273进行了定位,结果表明ST273基因与拟南芥第三条染色体上分子标记CIW11连锁.生物信息学分析发现该分子标记附近有一个调控花粉发育的基因TDF1.测序分析结果表明在st273突变体中,TDF1基因第三个外显子上459位的碱基发生了由G459变成了A459的单碱基变化,导致ST273基因该位点提前终止突变.等位分析结果表明st273与tdf1是等位突变体.st273突变体营养生长期发育正常,但生殖生长发育出现异常.亚历山大染色结果显示st273突变体花药中没有花粉.组织切片观察结果表明,突变体花药绒毡层异常肥大且空泡化,四分体不能正常释放小孢子,最终无法形成花粉.这些结果揭示了ST273蛋白质参与调控了绒毡层和小孢子发育过程. 相似文献
3.
In Arabidopsis, the tapetum plays important roles in anther and pollen development by providing enzymes for callose dissolution, materials for pollen wall formation, and nutrients for microspore development. This paper describes the functional analyses of the ST273 gene in anther and pollen development by using Arabidopsis male sterile mutant st273. Mutant st273 was identified from a T DNA insertion mutant population, and genetic analysis showed that st273 mutant was controlled by a single recessive nuclear gene. A map based cloning approach was used, and ST273 gene was mapped to be linked to a molecular marker CIW11 on chromosome 3. Bioinformatics analysis revealed that there is a TDF1 gene near the marker CIW11. Sequencing analysis indicated that st273 mutant had a G459 to A459 base pair change in the third exon of TDF1 gene, which resulted in premature termination mutation in this region. Allelism test indicated that ST273 and TDF1 belong to the same locus. The mutant plant grows normally during the vegetative growth stage, but show developmental defects at the reproductive growth stage. Alexander staining showed that there was no pollen in the mature anther locule. Cytology observation indicated that the mutant tapetum was enlarged and vacuolated, the tetrads could not release the microspores timely, and finally no pollen was formed in the anther. These results demonstrated that ST273 protein plays an important role in tapetum and microspore development. 相似文献
4.
Veena Prabhakar Tanja L?ttgert Stefan Geimer Peter D?rmann Stephan Krüger Vinod Vijayakumar Lukas Schreiber Cornelia G?bel Kirstin Feussner Ivo Feussner Kay Marin Pia Staehr Kirsten Bell Ulf-Ingo Flügge Rainer E. H?usler 《The Plant cell》2010,22(8):2594-2617
Restriction of phosphoenolpyruvate (PEP) supply to plastids causes lethality of female and male gametophytes in Arabidopsis thaliana defective in both a phosphoenolpyruvate/phosphate translocator (PPT) of the inner envelope membrane and the plastid-localized enolase (ENO1) involved in glycolytic PEP provision. Homozygous double mutants of cue1 (defective in PPT1) and eno1 could not be obtained, and homozygous cue1 heterozygous eno1 mutants [cue1/eno1(+/−)] exhibited retarded vegetative growth, disturbed flower development, and up to 80% seed abortion. The phenotypes of diminished oil in seeds, reduced flavonoids and aromatic amino acids in flowers, compromised lignin biosynthesis in stems, and aberrant exine formation in pollen indicate that cue1/eno1(+/−) disrupts multiple pathways. While diminished fatty acid biosynthesis from PEP via plastidial pyruvate kinase appears to affect seed abortion, a restriction in the shikimate pathway affects formation of sporopollonin in the tapetum and lignin in the stem. Vegetative parts of cue1/eno1(+/−) contained increased free amino acids and jasmonic acid but had normal wax biosynthesis. ENO1 overexpression in cue1 rescued the leaf and root phenotypes, restored photosynthetic capacity, and improved seed yield and oil contents. In chloroplasts, ENO1 might be the only enzyme missing for a complete plastidic glycolysis. 相似文献
5.
A Quantification of the Significance of Assimilatory Starch for Growth of Arabidopsis thaliana L. Heynh 总被引:9,自引:1,他引:9 下载免费PDF全文
These studies use starch synthesis mutants to quantify the contribution of assimilatory starch to whole plant growth and form. Arabidopsis thaliana (L.) Heynh plants were used with null plastid phosphoglucomutase (T Caspar, SC Huber, CR Sommerville, [1986] Plant Physiol 79; 1-7) or 7% of wild-type ADP-glucose pyrophosphorylase (T-P Lin, T Caspar, CR Sommerville, J Preiss [1988] Plant Physiol 88; 1175-1179). The daily turnover of starch and the rate of biomass increase in the mutants and the wild type were investigated during growth in a 14 hour light/10 hour dark cycle in high irradiance (600 micromoles per square meter per second) and nitrogen (6 millimolar NH4NO3), in high irradiance and low nitrogen (0.1 millimolar NH4NO3) or in low irradiance (80 micromoles per square meter per second) and high nitrogen. There is some variability in the data, but the following conclusions can be drawn. Growth was slow in the absence of starch turnover. In high nitrogen conditions, about 1 mole of carbon per gram dry weight per day was incorporated additionally into structural biomass for every one mole of carbon turned over as starch per gram dry weight per day. In low nitrogen, the gain was much lower. This indicates that temporary storage of photosynthate is important for rapid growth in high nitrogen, but not in low nitrogen when carbohydrate is in excess. Starch-deficient plants showed the usual decrease of the shoot/root ratio in low nitrogen and increase of the ratio in low light. This shows that adjustment of plant form to nitrogen nutrition and irradiance is not mediated via regulation of photosynthate partitioning in the leaf. Starch deficient plants had lower shoot/root ratios than the wild type and the nitrogen concentration in their leaves was increased. It is discussed how interactions between carbohydrate allocation, respiration and growth at the organ and whole plant level generate these changes. We conclude that mutants with a decreased capacity to carry out a particular partial process provide a powerful tool to disect complex mutually interacting systems, and define and quantify causal interactions at the level of whole plant growth. 相似文献
6.
《植物生理与分子生物学学报》2014,(4):751-754
Pollen development is a post-meiotic process that produces mature pollen grains from microspores and can be regarded as an ideal model for the study of important plant physiological processes such as reproduction, cellular differentiation, cell fate determination, signal transduction, membrane transport, and fusion and polar growth. The regulation of pollen development is a complicated biological process that is crucial for sexual reproduction in flowering plants (Yamamoto et al., 相似文献
7.
Laura L. Wayne James G. Wallis Rajesh Kumar Jonathan E. Markham John Browse 《The Plant cell》2013,25(8):3052-3066
In all eukaryotes, NADH:cytochrome b5 reductase provides electrons, via cytochrome b5, for a range of biochemical reactions in cellular metabolism, including for fatty acid desaturation in the endoplasmic reticulum. Studies in mammals, yeast, and in vitro plant systems have shown that cytochrome b5 can, at least in some circumstances, also accept electrons from NADPH:cytochrome P450 reductase, potentially allowing for redundancy in reductase function. Here, we report characterization of three T-DNA insertional mutants of the gene encoding cytochrome b5 reductase in Arabidopsis thaliana, CBR1. The progeny of plants heterozygous for the cbr1-2 allele segregated 6% homozygous mutants, while cbr1-3 and cbr1-4 heterozygotes segregated 1:1 heterozygous:wild type, indicating a gametophyte defect. Homozygous cbr1-2 seeds were deformed and required Suc for successful germination and seedling establishment. Vegetative growth of cbr1-2 plants was relatively normal, and they produced abundant flowers, but very few seeds. The pollen produced in cbr1-2 anthers was viable, but when germinated on cbr1-2 or wild-type stigmas, most of the resulting pollen tubes did not extend into the transmitting tract, resulting in a very low frequency of fertilization. These results indicate that cytochrome b5 reductase is not essential during vegetative growth but is required for correct pollen function and seed maturation. 相似文献
8.
A novel photorespiratory mutant of Arabidopsis thaliana, designatedgld2, was isolated based on a growth requirement for abnormallyhigh levels of atmospheric CO2. Photosynthetic CO2 fixationwas inhibited in the mutant following illumination in air butnot in atmosphere containing 2% O2. Photosynthetic assimilationof 14CO2 in an atmosphere containing 50% O2 resulted in accumulationof 48% of the soluble label in glycine in the mutant comparedto 9% in the wild type. The rate of glycine decarboxylationby isolated mitochondria from the mutant was reduced to 6% ofthe wild type rate. In genetic crosses, the mutant complementedtwo previously described photorespiratory mutants of A. thalianathat accumulate glycine during photosynthesis in air due todefects in glycine decarboxylase (glyD, now designated gld1)and serine transhydroxymethylase (stm). Because glycine decarboxylaseis a complex of four enzymes, these results are consistent witha mutation in a glycine decarboxylase subunit other than thataffected in the gld1 mutant. The two gld loci were mapped tochromosomes 2 and 5, respectively.
3Present address: Department of Crop and Soil Sciences, MichiganState University, East Lansing, MI 48824, U.S.A.
4Present address: Department of Applied Bioscience, Facultyof Agriculture, Hokkaido University, Kita-Ku, Sapporo, 060 Japan
5Present address: Department of Biology, Carnegie Institutionof Washington, 290 Panama Street, Standford, CA 94305, U.S.A. 相似文献
9.
以前报道了雄性育性下降突变体ms1516,而且图位克隆的方法已将突变基因MS1516定位到拟南芥基因组第3条染色体上28kh的区间内。本文通过进一步的生物信息学分析,发现该定位区间内有一个与减数分裂有关的基因AtATM,而且等位实验结果表明rns1516和nfm0是等位突变体。细胞学分析结果表明,ms1516突变体在花药发育过程中产生多个不均等的小孢子,而且大多数的小孢子不能发育成成熟的花粉。DAPI染色的结果显示小孢子母细胞减数分裂过程中,染色体不能正常分离,对成熟花粉的扫描电镜观察结果发现突变体多数花粉形态异常。以上结果说明MS1516基因在小孢子形成和发育过程中具有重要作用。 相似文献
10.
在RNA代谢过程中,需要许多蛋白和核酸的参与,其中一类蛋白就是RNA解旋酶。RNA解旋酶通过水解ATP获得能量来参与RNA代谢的多个方面,包括核内转录、pre-mRNA的剪切、核糖体发生、核质运输、蛋白质翻译、RNA降解、细胞器内基因的表达。DEAD-box蛋白家族是RNA解旋酶中最大的亚家族,它具有9个保守结构域,因motifyⅡ的保守氨基酸序列Asp-Glu-Ala-Asp(DEAD)而命名。该家族在酵母、拟南芥(Arabidopsis thaliana Heynh.)和人类基因组中都有较多的家庭成员。近年来,研究者对拟南芥DEAD-box蛋白家族的结构和功能进行了一些研究,本文着重总结DEAD-box基因家族对拟南芥生长发育的影响。 相似文献
11.
Cristina Pignocchi Gregory E. Minns Nathalie Nesi Rachil Koumproglou Georgios Kitsios Christoph Benning Clive W. Lloyd John H. Doonan Matthew J Hills 《The Plant cell》2009,21(1):90-105
Early endosperm development involves a series of rapid nuclear divisions in the absence of cytokinesis; thus, many endosperm mutants reveal genes whose functions are essential for mitosis. This work finds that the endosperm of Arabidopsis thaliana endosperm-defective1 (ede1) mutants never cellularizes, contains a reduced number of enlarged polyploid nuclei, and features an aberrant microtubule cytoskeleton, where the specialized radial microtubule systems and cytokinetic phragmoplasts are absent. Early embryo development is substantially normal, although occasional cytokinesis defects are observed. The EDE1 gene was cloned using a map-based approach and represents the pioneer member of a conserved plant-specific family of genes of previously unknown function. EDE1 is expressed in the endosperm and embryo of developing seeds, and its expression is tightly regulated during cell cycle progression. EDE1 protein accumulates in nuclear caps in premitotic cells, colocalizes along microtubules of the spindle and phragmoplast, and binds microtubules in vitro. We conclude that EDE1 is a novel plant-specific microtubule-associated protein essential for microtubule function during the mitotic and cytokinetic stages that generate the Arabidopsis endosperm and embryo. 相似文献
12.
13.
Sriram Devanathan Alexander Erban Rodolfo Perez-Torres Jr Joachim Kopka Christopher A. Makaroff 《PloS one》2014,9(4)
The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions. 相似文献
14.
The intercellular distribution of assimilatory sulfate reduction enzymes between mesophyll and bundle sheath cells was analyzed in maize (Zea mays L.) and wheat (Triticum aestivum L.) leaves. In maize, a C4 plant, 96 to 100% of adenosine 5′-phosphosulfate sulfotransferase and 92 to 100% of ATP sulfurylase activity (EC 2.7.7.4) was detected in the bundle sheath cells. Sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8) were found in both bundle sheath and mesophyll cell types. In wheat, a C3 species, ATP sulfurylase and adenosine 5′-phosphosulfate sulfotransferase were found at equivalent activities in both mesophyll and bundle sheath cells. Leaves of etiolated maize plants contained appreciable ATP sulfurylase activity but only trace adenosine 5′-phosphosulfate sulfotransferase activity. Both enzyme activities increased in the bundle sheath cells during greening but remained at negligible levels in mesophyll cells. In leaves of maize grown without addition of a sulfur source for 12 d, the specific activity of adenosine 5′-phosphosulfate sulfotransferase and ATP sulfurylase in the bundle sheath cells was higher than in the controls. In the mesophyll cells, however, both enzyme activities remained undetectable. The intercellular distribution of enzymes would indicate that the first two steps of sulfur assimilation are restricted to the bundle sheath cells of C4 plants, and this restriction is independent of ontogeny and the sulfur nutritional status of the plants. 相似文献
15.
Effect of Chlorate Treatment on Nitrate Reductase and Nitrite Reductase Gene Expression in Arabidopsis thaliana 总被引:4,自引:0,他引:4 下载免费PDF全文
The herbicide chlorate has been used extensively to isolate mutants that are defective in nitrate reduction. Chlorate is a substrate for the enzyme nitrate reductase (NR), which reduces chlorate to the toxic chlorite. Because NR is a substrate (NO3−)-inducible enzyme, we investigated the possibility that chlorate may also act as an inducer. Irrigation of ammonia-grown Arabidopsis plants with chlorate leads to an increase in NR mRNA in the leaves. No such increase was observed for nitrite reductase mRNA following chlorate treatment; thus, the effect seems to be specific to NR. The increase in NR mRNA did not depend on the presence of wild-type levels of NR activity or molybdenum-cofactor, as a molybdenum-cofactor mutant with low levels of NR activity displayed the same increase in NR mRNA following chlorate treatment. Even though NR mRNA levels were found to increase after chlorate treatment, no increase in NR protein was detected and the level of NR activity dropped. The lack of increase in NR protein was not due to inactivation of the cells' translational machinery, as pulse labeling experiments demonstrated that total protein synthesis was unaffected by the chlorate treatment during the time course of the experiment. Chlorate-treated plants still retain the capacity to make functional NR because NR activity could be restored by irrigating the chlorate-treated plants with nitrate. The low levels of NR protein and activity may be due to inactivation of NR by chlorite, leading to rapid degradation of the enzyme. Thus, chlorate treatment stimulates NR gene expression in Arabidopsis that is manifested only at the mRNA level and not at the protein or activity level. 相似文献
16.
Margaret M. McDonnell Sarah E. Burkhart Jerrad M. Stoddard Zachary J. Wright Lucia C. Strader Bonnie Bartel 《PloS one》2016,11(1)
Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability. 相似文献
17.
MM Holdorf HA Owen SR Lieber L Yuan N Adams C Dabney-Smith CA Makaroff 《Plant physiology》2012,160(1):226-236
Mutations in human (Homo sapiens) ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) result in the complex metabolic disease ethylmalonic encephalopathy, which is characterized in part by brain lesions, lactic acidemia, excretion of ethylmalonic acid, and ultimately death. ETHE1-like genes are found in a wide range of organisms; however, the biochemical and physiological role(s) of ETHE1 have not been examined outside the context of ethylmalonic encephalopathy. In this study we characterized Arabidopsis (Arabidopsis thaliana) ETHE1 and determined the effect of an ETHE1 loss-of-function mutation to investigate the role(s) of ETHE1 in plants. Arabidopsis ETHE1 is localized in the mitochondrion and exhibits sulfur dioxygenase activity. Seeds homozygous for a DNA insertion in ETHE1 exhibit alterations in endosperm development that are accompanied by a delay in embryo development followed by embryo arrest by early heart stage. Strong ETHE1 labeling was observed in the peripheral and chalazal endosperm of wild-type seeds prior to cellularization. Therefore, ETHE1 appears to play an essential role in regulating sulfide levels in seeds. 相似文献
18.
Kuntal De Lauren Sterle Laura Krueger Xiaohui Yang Christopher A. Makaroff 《PLoS genetics》2014,10(7)
Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes in mitosis and meiosis. The establishment of stable sister chromatid cohesion occurs during DNA replication and involves acetylation of the complex by the acetyltransferase CTF7. In higher eukaryotes, the majority of cohesin complexes are removed from chromosomes during prophase. Studies in fly and human have shown that this process involves the WAPL mediated opening of the cohesin ring at the junction between the SMC3 ATPase domain and the N-terminal domain of cohesin''s α-kleisin subunit. We report here the isolation and detailed characterization of WAPL in Arabidopsis thaliana. We show that Arabidopsis contains two WAPL genes, which share overlapping functions. Plants in which both WAPL genes contain T-DNA insertions show relatively normal growth and development but exhibit a significant reduction in male and female fertility. The removal of cohesin from chromosomes during meiotic prophase is blocked in Atwapl mutants resulting in chromosome bridges, broken chromosomes and uneven chromosome segregation. In contrast, while subtle mitotic alterations are observed in some somatic cells, cohesin complexes appear to be removed normally. Finally, we show that mutations in AtWAPL suppress the lethality associated with inactivation of AtCTF7. Taken together our results demonstrate that WAPL plays a critical role in meiosis and raises the possibility that mechanisms involved in the prophase removal of cohesin may vary between mitosis and meiosis in plants. 相似文献
19.
Borja Cascales-Mi?ana Jesús Mu?oz-Bertomeu María Flores-Tornero Armand Djoro Anoman José Pertusa Manuel Alaiz Sonia Osorio Alisdair R. Fernie Juan Segura Roc Ros 《The Plant cell》2013,25(6):2084-2101
This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development. 相似文献
20.
Maite Colinas Marion Eisenhut Takayuki Tohge Marta Pesquera Alisdair R. Fernie Andreas P.M. Weber Teresa B. Fitzpatrick 《The Plant cell》2016,28(2):439-453
Vitamin B6 comprises a family of compounds that is essential for all organisms, most notable among which is the cofactor pyridoxal 5′-phosphate (PLP). Other forms of vitamin B6 include pyridoxamine 5′-phosphate (PMP), pyridoxine 5′-phosphate (PNP), and the corresponding nonphosphorylated derivatives. While plants can biosynthesize PLP de novo, they also have salvage pathways that serve to interconvert the different vitamers. The selective contribution of these various pathways to cellular vitamin B6 homeostasis in plants is not fully understood. Although biosynthesis de novo has been extensively characterized, the salvage pathways have received comparatively little attention in plants. Here, we show that the PMP/PNP oxidase PDX3 is essential for balancing B6 vitamer levels in Arabidopsis thaliana. In the absence of PDX3, growth and development are impaired and the metabolite profile is altered. Surprisingly, RNA sequencing reveals strong induction of stress-related genes in pdx3, particularly those associated with biotic stress that coincides with an increase in salicylic acid levels. Intriguingly, exogenous ammonium rescues the growth and developmental phenotype in line with a severe reduction in nitrate reductase activity that may be due to the overaccumulation of PMP in pdx3. Our analyses demonstrate an important link between vitamin B6 homeostasis and nitrogen metabolism. 相似文献