首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
皮肤间充质干细胞是一种在皮肤中分离到的间充质干细胞,它具有强大的分化潜能,并且能长期保持多能性.本文介绍了皮肤间充质干细胞的发现及其特性,探讨了皮肤间充质干细胞的来源问题,并回顾了皮肤间充质干细胞作为一种潜在的细胞疗法在中枢/外周神经损伤、骨损伤和皮肤创伤中的研究,介绍了皮肤间充质干细胞大规模生产的一些尝试,并提出了未来需要解决的关键性问题.  相似文献   

2.
探讨骨髓间充质干细胞在器官移植中记忆性T淋巴细胞功能的影响。通过同种异基因皮肤移植的方法诱导CD8~+记忆性T淋巴细胞的产生,在体外应用混合淋巴增殖实验观察骨髓间充质干细胞对经过刺激后的T细胞增殖情况的影响;另一方面,通过同种异基因小鼠心脏移植模型的建立,在体内验证和观察骨髓间充质干细胞对小鼠移植器官生存寿命的影响。骨髓间充质干细胞在混合淋巴增殖实验中,可以有效抑制CD8~+记忆性T淋巴细胞的增殖能力,实验组淋巴细胞增殖指数明显低于对照组(t=4.575,p0.05);在小鼠心脏移植模型中,输注骨髓间充质干细胞后移植心脏的生存寿命明显增加,差异有统计学意义(p0.05)。骨髓间充质干细胞能够有效抑制器官移植中CD8~+记忆性T淋巴细胞的增殖,诱导免疫耐受,延长异体器官存活时间。  相似文献   

3.
间充质干细胞因具有易于分离培养获得、低免疫源性、多向分化潜能及旁分泌功能等特征,而被越来越多地用于组织再生与创伤修复研究,并显现了广阔的应用前景。间充质干细胞治疗皮肤创伤的研究已开展了十余年,无论动物模型或是临床病人,均显示了不错的疗效。然而,该治疗仍面临很多问题和挑战,离转化为临床常规治疗手段尚有距离。该文拟对间充质干细胞在皮肤创伤修复中的作用及其机制和提高疗效的手段等方面作一综述,并探讨面临的问题和未来的研究方向。  相似文献   

4.
目的:观察表达外源性Kringle1-5(K1-5)蛋白的人胎盘组织的间充质干细胞(HPMSCs)在体外对大鼠主动脉环血管生成的影响。方法:用胶原酶和贴壁法从人胎盘组织中提取间充质干细胞。选取感染复数MOI:50,将重组腺病毒载体rAd-K1-5感染HPMSCs至48 h;应用荧光显微镜观察转染效率。取8周雌性SD大鼠的腹主动脉,建立主动脉环血管生成体外模型,6天后观察基质胶内微血管形成的情况。结果:从人胎盘组织提取的成纤维样细胞具有贴壁生长特性,可向成骨细胞、脂肪细胞分化,证明从胎盘提取的细胞是间充质干细胞。采用rAd-K1-5腺病毒载体感染的HPMSCs可分泌Kringle1-5蛋白,表达K1-5蛋白的转基因HPMSCs处理的基质胶栓中管样结构的形成明显减少。结论:表达外源性Kringle1-5蛋白的HPMSCs能够体外抑制大鼠主动脉环新生血管生成。  相似文献   

5.
目的:观察活体染料羧基荧光素乙酰乙酸(CFSE)标记的人羊膜间充质干细胞对四氯化碳诱导小鼠肝损伤模型的定位修复情况。方法:采用胰蛋白酶-胶原酶消化法从羊膜组织中分离间充质干细胞,通过流式细胞术和免疫荧光等方法进行鉴定。模型组按浓度为20μl/g剂量的四氯化碳和橄榄油混合液诱导小鼠肝损伤,治疗组经小鼠尾静脉注射羧基荧光素乙酰乙酸标记的人羊膜间充质干细胞约1×106个/ml。分别取模型组和细胞移植的治疗组小鼠眼球血和肝组织进行相关检测。结果:分离得到纯度较高的羊膜间充质干细胞;冰冻切片免疫荧光显示移植1周后细胞向小鼠受损肝组织定植,CFSE标记的人羊膜间充质干细胞呈绿色荧光;细胞移植后4周,与模型组比较,细胞移植组小鼠血清中天冬氨酸转移酶、丙氨酸氨基转移酶显著降低,而白蛋白明显升高(P< 0.01);肝组织病理切片模型组小鼠细胞水肿,坏死灶多见,脂肪变性,可见不同程度的炎性细胞浸润;治疗组小鼠肝组织病理学改变和损伤程度有较明显改善;小鼠肝组织冰冻切片的免疫荧光显示移植4周后人羊膜间充质干细胞周围分泌血清白蛋白。结论:羧基荧光素乙酰乙酸标记的人羊膜间充质干细胞可有效改善肝组织的生理功能,为细胞定位移植治疗肝脏疾病的修复情况提供实验数据。  相似文献   

6.
目的:探讨小鼠骨髓间充质干细胞(MSCs)移植对去氧乙烯基环己烯(VCD)所致卵巢早衰治疗的可行性。方法:采用VCD(160mg kg-1,day-1)连续腹腔注射来诱导小鼠卵巢早衰。每侧卵巢注射转染了绿色荧光基因小鼠骨髓来源的MSCs,于移植后14、28天及45天,取各组血液标本及卵巢组织,同时观察小鼠动情周期的变化;酶联免疫法检测血清FSH、LH水平,显微镜下观察MSC在卵巢的分布。结果:MSCs移植后各组均可见绿色荧光,并且主要分布于卵巢间质区,卵巢泡膜细胞区也可见绿色荧光细胞。MSCs组动情周期较实验对照组缩短,FSH与LH水平较实验对照组低,差异具有显著性。结论:骨髓间充质干细胞可改善卵巢早衰小鼠的卵巢内分泌功能,并且长时间存在于卵巢组织。骨髓间充质干细胞可能成为卵巢早衰治疗的新方法。  相似文献   

7.
目的:骨髓间充质干细胞(Bone Mesenchymal Stem Cells,BMSCs)是骨再生工程中重要的种子细胞,它对骨组织缺损的修复有着良好的效果。但是BMSCs向成骨细胞分化并修复骨组织缺损是是由细胞外因子共同作用产生的结果。DDR2(Discoidin Domain Receptor 2)作为I型胶原的特异性受体在成骨细胞的分化中发挥重要的调节作用。而对于其在BMSCs向成骨细胞的分化过程中的所起到的作用还鲜有研究,对其作用机理尚不明确。因此我们希望通过分离、培养并鉴定比较DDR2基因缺失小鼠与野生型小鼠来源的骨髓间充质干细胞了解其生物学特性,为后续的实验奠定理论基础。方法:采用改良型的全骨髓贴壁细胞分离方法分离培养两种小鼠来源的骨髓间充质干细胞,采用流式细胞技术鉴定其表面标记物的表达,并利用诱导培养液诱导骨髓间充质干细胞向成骨细胞和成脂肪细胞分化。结果:分离培养的两种骨髓间充质干细胞形态一致,增殖能力和自我更新能力强,流式细胞术检测其表面标记物CD29,Sca-1均表达阳性,CD105,CD45表达为阴性,分离得到的两种细胞均有向成骨细胞和成脂肪细胞分化的能力,但可以明显观察到DDR2基因缺失小鼠的骨髓间充质干细胞的成骨分化能力减弱。结论:本实验通过对于DDR2基因缺失小鼠BMSCs分离、培养和鉴定,初步探索DDR2基因缺失在在成骨过程中的作用结果,为进一步研究提高BMSCs的成骨分化能力奠定理论基础。经实验证明,DDR2基因缺失小鼠来源的骨髓间充质干细胞虽然仍具备干细胞的生物学特性,但其向成骨细胞的分化能力明显减弱,说明DDR2基因缺失对其骨髓间充质干细胞的成骨分化等有着重要的影响。  相似文献   

8.
近年来,因在退行性或遗传性等疾病中潜在的治疗前景,成体干细胞可塑性引起众多学者的广泛兴趣。有许多报道显示骨髓源干细胞植入体内可生成多种组织细胞,但到目前为止,成体干细胞可塑性尚存争议,尤其是关于成体干细胞体内分化成皮肤组织的报道较少且意见不一。本工作,自成年BALB/C小鼠的骨髓中分离获得并体外培养扩增多能间充质干细胞,将适量的供体BALB/C小鼠骨髓源多能间充质干细胞和一定量的C57BL/6小鼠骨髓细胞经尾静脉共同植入经致死量照射的成年C57BL/6小鼠。40天后,观察到受体C57BL/6小鼠背部出现白色毛发,逐渐扩展至3—4cm^2,同时还出现在颈部和腹部,取该部位的皮肤组织进行免疫组化检测及RT—PC汉检测。蛋白水平和基因水平的结果均显示受体C57BL/6小鼠出现白色毛发处的皮肤组织为BALB/C来源。首次直接证明了成体骨能源多能间充质干细胞体内在一定条件下可以分化成皮肤干细胞及皮肤组织。不仅为研究体内诱导皮肤分化的机制也为鉴定成体多能干细胞提供了一个模型,也为成体干细胞可塑性理论提供了新的依据。  相似文献   

9.
目的:探讨转染腺相关病毒对骨髓间充质干细胞分化潜能的影响.方法:运用密度梯度离心法分离骨髓间充质干细胞;将pAAV-GFP、pAAV-RC、pHelper用磷酸钙法共转染HEK-293细胞,得到rAAV-GFP,转染骨髓间充质干细胞.进行成骨诱导分化,观察rAAV-GFP对骨髓间充质干细胞分化潜能的影响.结果:与未转染rAAV-GFP的间充质干细胞相比较,转染rAAV-GFP后,骨髓间充质干细胞分化潜能未见改变,均表现为细胞浆蓝紫色,核周明显.结论:转染腺相关病毒对骨髓间充质干细胞分化潜能未见明显影响,为基因修饰腺相关病毒转染骨髓间充质干细胞进行体内移植提供了实验基础.  相似文献   

10.
该文探讨了建立生物学特性稳定的人胎盘底蜕膜间充质干细胞(DB-MSCs)库的可行性,旨在为组织工程种子细胞提供更多来源.该研究采用组织块贴壁法从10例足月人胎盘底蜕膜组织中获取间充质干细胞,并采用STR检测细胞是否均来源于母体组织.对分离得到的DB-MSCs采用-196℃低温冻存,并在一定时间复苏培养,用倒置显微镜观察...  相似文献   

11.
目的:研究N-乙酰基-丝氨酰-天冬氨酰-赖氨酰-脯氨酸(N-acetyl-seryl-aspartly-lysyl-proline,Ac SDKP)对转化生长因子β1(Transforming growth factor beta 1,TGF-β1)诱导大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs)向肌成纤维细胞(myofibroblast,MF)分化的影响,探讨Ac SDKP抗纤维化作用的可能机制。方法:全骨髓贴壁法分离培养大鼠骨髓MSCs。使用免疫组化,Western blotting技术分析α-SMA蛋白的表达以及Smad2/3,ERK1/2蛋白磷酸化的变化情况。结果:和对照组相比,TGF-β1诱导的MSC中α-SMA、磷酸化-Smad2/3及磷酸化-ERK1/2的表达大大增强,使用Ac SDKP干预细胞则三者的表达量明显下降且呈一定的剂量依赖性。结论:Ac SDKP可以显著抑制TGF-β1诱导的大鼠MSCs向MF分化,可能通过抑制TGF-β/Smad/ERK1/2信号通路的激活,从而发挥其抗器官纤维化作用。  相似文献   

12.
Activation of fibroblasts and their differentiation into myofibroblasts, excessive collagen production and fibrosis occurs in a number of bladder diseases. Similarly, conversion of epithelial cells into mesenchymal cells (EMT) has been shown to increase fibroblasts like cells. TGF-β1 can induce the EMT and the role of TGF-β1-induced EMT during bladder injury leading to fibrosis and possible organ failure is gaining increasing interest. Here we show that EMT and fibrosis in porcine bladder urothelial (UC) cells are Smad dependent. Fresh normal porcine bladder urothelial cells were grown in culture with or without TGF-β1 and EMT markers were assessed. TGF-β1 treatment induced changes in cellular morphology as depicted by a significant decrease in the expression of E-cadherin and corresponding increase in N-cadherin and α-SMA. We knocked down Smad2 and Smad3 by Smad specific siRNA. Downregulation of E-cadherin expression by TGF-β1 was Smad3-dependent, whereas N-cadherin and α-SMA were dependent on both Smad2 and Smad3. Connective tissue growth factor (CTGF/CCN2), matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) has been shown to play important roles in the pathogenesis of fibrosis. Induction of these genes by TGF-β1 was found to be time dependent. Upregulation of CTGF/CCN2 by TGF-β1 was Smad3 dependent; whereas MMP-2 was Smad2 dependent. Smad2 and Smad3 both participated in MMP-9 expression. TGF-β1 reprogrammed mesenchymal fibroblast like cells robustly expressed collagen I and III and these was inhibited by SB-431542, a TGF-β receptor inhibitor. Our results indicate that EMT of porcine bladder UC cells is TGF-β1 dependent and is mediated through Smad2 and Smad3. TGF-β1 may be an important factor in the development of bladder fibrosis via an EMT mechanism. This identifies a potential amenable therapeutic target.  相似文献   

13.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

14.
BackgroundApigenin can reduce cardiomyocyte hypertrophy by downregulating hypoxia inducible factor-1 alpha (HIF-1α) expression. However, its effects on cardiac fibroblasts (CFs) and its exact inhibitory molecular mechanisms on HIF-1α remain unclear.PurposeThis study aims to examine the effects of apigenin on cell proliferation and differentiation, microRNA-122-5p (miR-122-5p) expression, and HIF-1α-mediated Smad signaling pathway in transforming growth factor beta 1 (TGF-β1)-stimulated CFs and cardiac fibrosis and to investigate the relationship between miR-122-5p and HIF-1α.MethodsThe TGF-β1-stimulated CFs, the combination of TGF-β1-stimulated and miR-122-5p mimic-transfected CFs, the combination of TGF-β1-stimulated and miR-122-5p inhibitor-transfected CFs, and the isoproterenol-induced cardiac fibrotic mice were used and treated with or without apigenin. The recombinant lentiviruses overexpressing HIF-1α vector and miR-122-5p mimic were co-transfected to observe their interaction. Related mRNA and protein expressions and myocardial collagen were determined. The luciferase reporter gene that contains HIF-1α wild type or mutant type 3’-UTR was used, and the luciferase activity was determined to verify the direct link between miR-122-5p and HIF-1α.ResultsIn the TGF-β1-stimulated CFs, apigenin treatment increased the miR-122-5p and Smad7 expressions and decreased the HIF-1α, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 expressions. Similar and inverse results were observed in the miR-122-5p mimic- and inhibitor-transfected CFs, respectively. Moreover, the miR-122-5p mimic could antagonize the effects of TGF-β1 in the TGF-β1 and miR-122-5p mimic-combined CFs, and the miR-122-5p inhibitor could enhance the effects of TGF-β1 in the TGF-β1 and miR-122-5p inhibitor-combined CFs. In the two aforementioned cell models, the addition of apigenin could further enhance the effects of miR-122-5p mimic and partially reverse the effects of miR-122-5p inhibitor. After treatment of HIF-1α-transfected CFs with miR-122-5p mimic, the HIF-1α expression decreased. Further study confirmed that HIF-1α was a direct target of miR-122-5p. Apigenin also decreased the myocardial collagen accumulation in cardiac fibrotic mice.ConclusionApigenin could suppress the differentiation and collagen synthesis of TGF-β1-stimulated CFs and mouse cardiac fibrosis, and its mechanisms were related to the increment of miR-122-5p expression and subsequent downregulation of HIF-1α expression via direct interaction, which might finally result in the decrements of Smad2/3 and p-Smad2/3 expressions and increment of Smad7 expression.  相似文献   

15.
Transforming growth factor (TGF)-β2, gremlin and connective tissue growth factor (CTGF) are known to play important roles in the induction of epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) synthesis. However, the complex functional relationship among gremlin, CTGF and TGF-β2 in the induction of EMT and ECM synthesis in human lens epithelial cells (HLECs) has not been reported. In this study, we found that TGF-β2, CTGF and gremlin can individually induce the expression of α-smooth muscle actin (α-SMA), fibronectin (Fn), collagen type I (COL-I), Smad2 and Smad3 in HLECs. Blockade of CTGF and gremlin effectively inhibited TGF-β2-induced expression of α-SMA, Fn, COL-I, Smad2, and Smad3 in HLECs. Furthermore blockade of Smad2 and Smad3 effectively inhibited CTGF and gremlin induced expression of α-SMA, Fn, COL-I in HLECs. In conclusion, TGF-β2, CTGF and gremlin are all involved in EMT and ECM synthesis via activation of Smad signaling pathway in HLECs. Specifically silencing CTGF and gremlin can effectively block the TGF-β2-induced EMT, ECM synthesis due to failure in activation of Smad signaling pathway in HLECs.  相似文献   

16.
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.  相似文献   

17.
Atrial natriuretic peptide (ANP) is increasingly expressed on airway and inhibits pulmonary arterial remodeling. However, the role of ANP in remodeling of respiratory system is still unclear. The role of ANP on airway remodeling and the possible mechanism was explored in this study. Both human bronchial epithelial 16HBE-14o cells and alveolar epithelial A549 cells were stimulated by TGF-β1, ANP, cGMP inhibitor, PKG inhibitor, and cGMP analogue. The expressions of epithelial markers, mesenchymal markers, and Smad3 were assessed by quantitative real-time PCR and western blotting. Immunohistochemical staining was employed to assess Smad3 expression once it was silenced by siRNA in 16HBE-14o or A549 cells. Our results showed that the mRNA and protein expressions of E-Cadherin were decreased, whereas α-SMA expressions were increased after induction by TGF-β1 in 16HBE-14o and A549 cells. The E-Cadherin expressions were increased and α-SMA expressions were decreased after ANP stimulation. Inhibition of cGMP or PKG decreased E-Cadherin expression but increased α-SMA expression, which could be reversed by cGMP analogue. Moreover, the phosphorylated Smad3 expression was consistent with α-SMA expression. After smad3 was silenced, Smad3 was mostly expressed in cytoplasm instead of nucleus as non-silenced cells during epithelial-mesenchymal transition (EMT). In conclusion, ANP inhibits TGF-β1-induced EMT in 16HBE-14o and A549 cells through cGMP/PKG signaling, by which it targets TGF-β1/Smad3 via attenuating phosphorylation of Smad3. These findings suggest the potential of ANP in the treatment on pulmonary diseases with airway remodeling.  相似文献   

18.
Transforming growth factor-beta (TGF-β) plays a central role in the development of fibrosis by stimulating extracellular matrix accumulation, and signals either directly or indirectly through types I, II, and III (TβRI, II, and III) TGF-β receptor complexes. Ginsan, a polysaccharide extracted from Panax ginseng, has multiple immunomodulatory effects. Here, we examine whether ginsan regulates the fibrogenic process by interfering with TGF-β signaling pathways. TGF-β treatment of murine or human normal lung fibroblasts enhanced the levels of several fibrotic markers, including smooth muscle alpha actin (α-SMA), collagen-1, and fibronectin. Interestingly, ginsan treatment either before or after TGF-β administration led to significant reductions in all of α-SMA, collagen-1, and fibronectin expression levels. Ginsan not only inhibited phosphorylation of Smad2 and Smad3, but also attenuated pERK and pAKT signaling induced by TGF-β. Moreover, ginsan restored TβRIII protein expression, which was significantly downregulated by TGF-β, but reduced TβRI and TβRII protein levels. In a murine model of bleomycin (BLM)-induced pulmonary fibrosis, ginsan significantly suppressed accumulation of collagen, α-SMA, and TGF-β. These data collectively suggest that ginsan acts as an effective anti-fibrotic agent in the treatment of pulmonary fibrosis by blocking multiple TGF-β signaling pathways.  相似文献   

19.
The epithelial to mesenchymal transition (EMT) is a crucial event for renal fibrosis that can be elicited by TGF-β1/Smads signaling and its downstream mediator connective tissue growth factor (CTGF). As a distinct member of the TGF-β superfamily, Lefty A has been shown to be significantly downregulated in the kidneys of patients with severe ureteral obstruction, suggesting its role in renal fibrosis induced by obstructive nephropathy. In order to determine whether Lefty A prevents TGF-β1-induced EMT, human proximal tubule epithelial cells (HK-2) were stably transfected with Lefty A or control vectors and stimulated with 10 ng/ml TGF-β1 for 48 h. The results show that stimulation with TGF-β1 led to EMT including cell morphology changes, Smad2/3 signaling pathway activation, increased α-SMA, collagen type I, and CTGF expression, and decreased E-cadherin expression in mock-transfected HK-2 cells. Overexpression of Lefty A efficiently blocked p-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. This finding suggests that Lefty A may serve as a potential new therapeutic target to inhibit or even reverse EMT during the process of renal fibrosis.  相似文献   

20.
Silicosis is a devastating occupational disease caused by long-term inhalation of silica particles, inducing irreversible lung damage and affecting lung function, without effective treatment. Mesenchymal stem cells (MSCs) are a heterogeneous subset of adult stem cells that exhibit excellent self-renewal capacity, multi-lineage differentiation potential and immunomodulatory properties. The aim of this study was to explore the effect of bone marrow-derived mesenchymal stem cells (BMSCs) in a silica-induced rat model of pulmonary fibrosis. The rats were treated with BMSCs on days 14, 28 and 42 after perfusion with silica. Histological examination and hydroxyproline assays showed that BMSCs alleviated silica-induced pulmonary fibrosis in rats. Results from ELISA and qRT-PCR indicated that BMSCs inhibited the expression of inflammatory cytokines TNF-α, IL-1β and IL-6 in lung tissues and bronchoalveolar lavage fluid of rats exposed to silica particles. We also performed qRT-PCR, Western blot and immunohistochemistry to examine epithelial-mesenchymal transition (EMT)–related indicators and demonstrated that BMSCs up-regulate E-cadherin and down-regulate vimentin and extracellular matrix (ECM) components such as fibronectin and collagen Ⅰ. Additionally, BMSCs inhibited the silica-induced increase in TGF-β1, p-Smad2 and p-Smad3 and decrease in Smad7. These results suggested that BMSCs can inhibit inflammation and reverse EMT through the inhibition of the TGF-β/Smad signalling pathway to exhibit an anti-fibrotic effect in the rat silicosis model. Our study provides a new and meaningful perspective for silicosis treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号