首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Src-family kinases, known to participate in signaling pathways of a variety of surface receptors, are localized to the cytoplasmic side of the plasma membrane through lipid modification. We show here that Lyn, a member of the Src-family kinases, is biosynthetically transported to the plasma membrane via the Golgi pool of caveolin along the secretory pathway. The trafficking of Lyn from the Golgi apparatus to the plasma membrane is inhibited by deletion of the kinase domain or Csk-induced "closed conformation" but not by kinase inactivation. Four residues (Asp346 and Glu353 on alphaE helix, and Asp498 and Asp499 on alphaI helix) present in the C-lobe of the kinase domain, which can be exposed to the molecular surface through an "open conformation," are identified as being involved in export of Lyn from the Golgi apparatus toward the plasma membrane but not targeting to the Golgi apparatus. Thus, the kinase domain of Lyn plays a role in Lyn trafficking besides catalysis of substrate phosphorylation.  相似文献   

2.
Protein trafficking between the endoplasmic reticulum (ER) and Golgi apparatus is central to cellular homeostasis. ER export signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the Golgi. Norwalk virus nonstructural protein p22 contains a YXΦESDG motif that mimics a di-acidic ER export signal in both sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved human norovirus motif is therefore an appealing target for antiviral drug development.  相似文献   

3.
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward‐bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi‐to‐plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal‐deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail‐anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy‐ and Rab6‐dependent, and Rab6 inhibition accelerated signal‐deleted VSVG's transport to the cell surface. Our results extend the dynamic bi‐directional relationship between the Golgi and ER to include surface‐directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.  相似文献   

4.
The mechanism(s) of cystic fibrosis transmembrane conductance regulator (CFTR) trafficking from the endoplasmic reticulum (ER) through the Golgi apparatus, the step impaired in individuals afflicted with the prevalent CFTR-DeltaF508 mutation leading to cystic fibrosis, is largely unknown. Recent morphological observations suggested that CFTR is largely absent from the Golgi in situ (Bannykh, S. I., Bannykh, G. I., Fish, K. N., Moyer, B. D., Riordan, J. R., and Balch, W. E. (2000) Traffic 1, 852-870), raising the possibility of a novel trafficking pathway through the early secretory pathway. We now report that export of CFTR from the ER is regulated by the conventional coat protein complex II (COPII) in all cell types tested. Remarkably, in a cell type-specific manner, processing of CFTR from the core-glycosylated (band B) ER form to the complex-glycosylated (band C) isoform followed a non-conventional pathway that was insensitive to dominant negative Arf1, Rab1a/Rab2 GTPases, or the SNAp REceptor (SNARE) component syntaxin 5, all of which block the conventional trafficking pathway from the ER to the Golgi. Moreover, CFTR transport through the non-conventional pathway was potently blocked by overexpression of the late endosomal target-SNARE syntaxin 13, suggesting that recycling through a late Golgi/endosomal system was a prerequisite for CFTR maturation. We conclude that CFTR transport in the early secretory pathway can involve a novel pathway between the ER and late Golgi/endosomal compartments that may influence developmental expression of CFTR on the cell surface in polarized epithelial cells.  相似文献   

5.
PtdIns4P is a key regulator of the secretory pathway and plays an essential role in trafficking from the Golgi. Our recent work demonstrated that spatial control of PtdIns4P at the ER (endoplasmic reticulum) and Golgi co-ordinates secretion with cell growth. The central elements of this regulation are specific phosphoinositide 4-kinases and the phosphoinositide phosphatase Sac1. Growth-dependent translocation of Sac1 between the ER and Golgi modulates the levels of PtdIns4P and anterograde traffic at the Golgi. In yeast, this mechanism is largely dependent on the availability of glucose, but our recent results in mammalian cells suggest that Sac1 phosphatases play evolutionarily conserved roles in the growth control of secretion. Sac1 lipid phosphatase plays also an essential role in the spatial control of PtdIns4P at the Golgi complex. A restricted pool of PtdIns4P at the TGN (trans-Golgi network) is required for Golgi integrity and for proper lipid and protein sorting. In mammalian cells, the stress-activated MAPK (mitogen-activated protein kinase) p38 appears to play a critical role in transmitting nutrient signals to the phosphoinositide signalling machinery at the ER and Golgi. These results suggest that temporal and spatial integration of metabolic and lipid signalling networks at the Golgi is required for controlling the secretory pathway.  相似文献   

6.
Phosphoinositides play important roles in Golgi traffic and structural integrity. Specific lipid kinases and phosphatases associate with the Golgi complex and regulate the multiplicity of trafficking routes from this organelle. Work in different model systems showed that the basic elements that regulate lipid signaling at the Golgi are conserved from yeast to humans. Many of the enzymes involved in Golgi phosphoinositide metabolism are essential for viability or cause severe human disease when malfunctioning. Phosphoinositide effectors at the Golgi control both non-vesicular transfer of lipids and sorting of secretory and membrane proteins. In addition, Golgi phosphoinositides were recently implicated in the metabolic and cell growth-dependent regulation of the secretory pathway.  相似文献   

7.
The mitogen-activated protein kinases (MAP kinases) play a central role in signaling pathways initiated by extracellular stimuli such as growth factors, cytokines, and various forms of environmental stress. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Interestingly, down-regulation of MAP kinase activity can be initiated by multiple Ser/Thr phosphatases, Tyr-specific phosphatases, and dual-specificity phosphatases. This would inevitable lead to the formation of monophosphorylated MAP kinases. However, in much of the literature investigating MAP kinase signaling, there has been the implicit assumption that the monophosphorylated forms are inactive. Thus, the significance for the need of multiple phosphatases in regulating MAP kinase activity is not clear, and the biological functions of these monophosphorylated MAP kinases are currently unknown. We have prepared extracellular signal-regulated protein kinase 2 (ERK2) in all phosphorylated forms and kinetically characterized them using two proteins (the myelin basic protein and Elk-1) and ATP as substrates. Our results revealed that a single phosphorylation in the activation loop of ERK2 produces an intermediate activity state. Thus, the catalytic efficiencies of the monophosphorylated ERK2/pY and ERK2/pT (ERK2 phosphorylated on Tyr-185 and Thr-183, respectively) are approximately 2-3 orders of magnitude higher than that of the unphosphorylated ERK2 and are only 1-2 orders of magnitude lower than that of the fully active bisphosphorylated ERK2/pTpY. This raises the possibility that the monophosphorylated ERK2s may have distinct biological roles in vivo. Different phosphorylation states in the activation loop could be linked to graded effects on a single ERK2 function. Alternatively, they could be linked to distinct ERK2 functions. Although less active than the bisphosphorylated species, the monophosphorylated ERK2s may differentially phosphorylate pathway components.  相似文献   

8.
Regulation of protein transport within the early secretory pathway is a relatively unexplored area. Here, we propose a new player in the control of protein transport from the endoplasmic reticulum (ER) to the Golgi. Akt is an important signaling kinase whose functioning is perturbed in diseases such as cancer and diabetes. We discovered that Akt phosphorylates Sec24, an essential coat protein II (COPII) component involved in mediating cargo selection for ER-to-Golgi trafficking. We discuss how this finding may provide new insights into the regulation of protein transport.  相似文献   

9.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

10.
Biomolecules in the secretory pathway use membrane trafficking for reaching their final intracellular destination or for secretion outside the cell. This highly dynamic and multipartite process involves different organelles that communicate to one another while maintaining their identity, shape, and function. Recent studies unraveled new mechanisms of interorganelle communication that help organize the early secretory pathway. We highlight how the spatial proximity between endoplasmic reticulum (ER) exit sites and early Golgi elements provides novel means of ER–Golgi communication for ER export. We also review recent findings on how membrane contact sites between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi complex.  相似文献   

11.
The protein processing and trafficking function of the Golgi is intimately linked to multiple intracellular signaling pathways. Assembly of Golgi trafficking structures and lipid sorting at the Golgi complex is controlled and coordinated by specific phosphoinositide kinases and phosphatases. The intra-Golgi transport machinery is also regulated by kinases belonging to several functionally distinct families, for example, MAP kinase signaling is required for mitotic disassembly of the Golgi. However, the Golgi plays an additional, prominent role in compartmentalizing other signaling cascades that originate at the plasma membrane or at other organelles. This article summarizes recent advances in our understanding of the signaling network that converges at the Golgi.The Golgi apparatus is a dynamic structure that constantly exchanges proteins and lipids with other organelles. It is critical for organellar homeostasis that the different trafficking routes at the Golgi are precisely regulated. For example, the sorting and transport functions of the Golgi must be correctly coordinated with the overall activity of the secretory pathway. In addition, changes in Golgi structure and morphology are tightly controlled, which is particularly critical during mitosis, when the Golgi complex becomes disassembled for proper distribution between the dividing cells. It is therefore not surprising that diverse sets of signaling factors localize at the Golgi and control its function and shape.Phosphoinositide lipids have emerged as particularly important regulators of Golgi function. Reversible phosphorylation of the inositol headgroup of phosphatidylinositol creates seven distinct phosphoinositide species (Di Paolo and De Camilli 2006). These molecules serve as signal transducers at virtually every cellular membrane but have a particularly important role in controlling membrane traffic (Di Paolo and De Camilli 2006). A critical property of phosphoinositides is their tightly regulated spatial distribution. Recent studies have uncovered concentrated pools of these lipids at individual membranes including the Golgi (Roy and Levine 2004; De Matteis et al. 2005; Varnai and Balla 2008). Phosphoinositides often act in cooperation with small Ras-type GTPases and the interplay between phosphoinositides and GTPases from the ADP-ribosylation factor (Arf) and Ras-related in brain (Rab) families is essential for Golgi function (Behnia and Munro 2005; Mayinger 2009). How the lipid kinases and phosphatases that regulate Golgi phosphoinositides interact with other signaling pathway remains a challenging area of research.Whereas phosphoinositide signaling pathways are mainly controlled via extracellular signals that transmit metabolic status and growth conditions, Golgi function can also be regulated by signals that originate at other secretory organelles. Enhanced biosynthesis and processing of secretory proteins at the ER induces the activation of a signaling network that modulates intra-Golgi traffic and overall capacity of secretion (Sallese et al. 2009).Finally, there is mounting evidence that the Golgi serves as an important signaling platform for numerous signaling cascades that originate at the plasma membrane. The discovery that components of the Ras and the protein kinase A (PKA) pathways reside at the Golgi indicates that this organelle plays an important role in compartmentalizing signal transduction pathways (Quatela and Philips 2006; Sallese et al. 2009). This article will review our current understanding of signaling at the Golgi and also highlight the relevance of these processes for human disease.  相似文献   

12.
The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells.  相似文献   

13.
Although numerous linear motifs that direct protein trafficking within cells have been identified, there are few examples of linear sorting signals mediating directed export of membrane proteins from the Golgi complex to the plasma membrane. The reovirus fusion-associated small transmembrane proteins are simple, single-pass transmembrane proteins that traffic through the endoplasmic reticulum–Golgi pathway to the plasma membrane, where they induce cell–cell membrane fusion. Here we show that a membrane-proximal, polybasic motif (PBM) in the cytosolic tail of p14 is essential for efficient export of p14 from the Golgi complex to the plasma membrane. Extensive mutagenic analysis reveals that the number, but not the identity or position, of basic residues present in the PBM dictates p14 export from the Golgi complex, with a minimum of three basic residues required for efficient Golgi export. Results further indicate that the tribasic motif does not affect plasma membrane retention of p14. Furthermore, introduction of the tribasic motif into a Golgi-localized, chimeric ERGIC-53 protein directs export from the Golgi complex to the plasma membrane. The p14 PBM is the first example of an autonomous, tribasic signal required for Golgi export to the plasma membrane.  相似文献   

14.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.  相似文献   

15.
When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I-mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor-induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery.  相似文献   

16.
Signal-dependent sorting of proteins in the early secretory pathway is required for dynamic retention of endoplasmic reticulum (ER) and Golgi components. In this study, we identify the Erv41–Erv46 complex as a new retrograde receptor for retrieval of non–HDEL-bearing ER resident proteins. In cells lacking Erv41–Erv46 function, the ER enzyme glucosidase I (Gls1) was mislocalized and degraded in the vacuole. Biochemical experiments demonstrated that the luminal domain of Gls1 bound to the Erv41–Erv46 complex in a pH-dependent manner. Moreover, in vivo disturbance of the pH gradient across membranes by bafilomycin A1 treatment caused Gls1 mislocalization. Whole cell proteomic analyses of deletion strains using stable isotope labeling by amino acids in culture identified other ER resident proteins that depended on the Erv41–Erv46 complex for efficient localization. Our results support a model in which pH-dependent receptor binding of specific cargo by the Erv41–Erv46 complex in Golgi compartments identifies escaped ER resident proteins for retrieval to the ER in coat protein complex I–formed transport carriers.  相似文献   

17.
Synaptic re-uptake of dopamine is dependent on the dopamine transporter (DAT), which is regulated by its distribution to the cell surface. DAT trafficking is modulated by the Parkinson''s disease-linked protein alpha-synuclein, but the contribution of synuclein family members beta-synuclein and gamma-synuclein to DAT trafficking is not known. Here we use SH-SY5Y cells as a model of DAT trafficking to demonstrate that all three synucleins negatively regulate cell surface distribution of DAT. Under these conditions the synucleins limit export of DAT from the endoplasmic reticulum (ER) by impairment of the ER-Golgi transition, leading to accumulation of DAT in this compartment. This mechanism for regulating DAT export indirectly through effects on ER and Golgi function represents a previously unappreciated role for the extended synuclein family that is likely applicable to trafficking of the many proteins that rely on the secretory pathway.  相似文献   

18.
The molecular mechanism underlying the transport of G protein-coupled receptors from the endoplasmic reticulum (ER) to the cell surface is poorly understood. This issue was addressed by determining the role of Rab1, a Ras-related small GTPase that coordinates vesicular protein transport in the early secretory pathway, in the subcellular distribution and function of the angiotensin II type 1A receptor (AT1R), beta2-adrenergic receptor (AR), and alpha2B-AR in HEK293T cells. Inhibition of endogenous Rab1 function by transient expression of dominant-negative Rab1 mutants or Rab1 small interfering RNA (siRNA) induced a marked perinuclear accumulation and a significant reduction in cell-surface expression of AT1R and beta2-AR. The accumulated receptors were colocalized with calregulin (an ER marker) and GM130 (a Golgi marker), consistent with Rab1 function in regulating protein transport from the ER to the Golgi. In contrast, dominant-negative Rab1 mutants and siRNA had no effect on the subcellular distribution of alpha2B-AR. Similarly, expression of dominant-negative Rab1 mutants and siRNA depletion of Rab1 significantly attenuated AT1R-mediated inositol phosphate accumulation and ERK1/2 activation and beta2-AR-mediated ERK1/2 activation, but not alpha2B-AR-stimulated ERK1/2 activation. These data indicate that Rab1 GTPase selectively regulates intracellular trafficking and signaling of G protein-coupled receptors and suggest a novel, as yet undefined pathway for movement of G protein-coupled receptors from the ER to the cell surface.  相似文献   

19.
Mitogen-activated protein kinases (MAP kinases) are intracellular signaling kinases activated by phosphorylation in response to a variety of extracellular stimuli. Mammalian MAP kinase pathways are composed of three major pathways: MEK1 (mitogen-activated protein kinase kinase 1)/ERK 1/2 (extracellular signal-regulated kinases 1/2)/p90 RSK (p90 ribosomal S6 kinase), JNK (c-Jun amino (N)-terminal kinase)/c-Jun, and p38 MAPK pathways. These pathways coordinately mediate physiological processes such as cell survival, protein synthesis, cell proliferation, growth, migration, and apoptosis. The involvement of MAP kinase in noise-induced hearing loss (NIHL) has been implicated in the cochlea; however, it is unknown how expression levels of MAP kinase change after the onset of NIHL and whether they are regulated by transient phosphorylation or protein synthesis. CBA/J mice were exposed to 120-dB octave band noise for 2 h. Auditory brainstem response confirmed a component of temporary threshold shift within 0–24 h and significant permanent threshold shift at 14 days after noise exposure. Levels and localizations of phospho- and total- MEK1/ERK1/2/p90 RSK, JNK/c-Jun, and p38 MAPK were comprehensively analyzed by the Bio-Plex® Suspension Array System and immunohistochemistry at 0, 3, 6, 12, 24 and 48 h after noise exposure. The phospho-MEK1/ERK1/2/p90 RSK signaling pathway was activated in the spiral ligament and the sensory and supporting cells of the organ of Corti, with peaks at 3–6 h and independently of regulations of total-MEK1/ERK1/2/p90 RSK. The expression of phospho-JNK and p38 MAPK showed late upregulation in spiral neurons at 48 h, in addition to early upregulations with peaks at 3 h after noise trauma. Phospho-p38 MAPK activation was dependent on upregulation of total-p38 MAPK. At present, comprehensive data on MAP kinase expression provide significant insight into understanding the molecular mechanism of NIHL, and for developing therapeutic models for acute sensorineural hearing loss.  相似文献   

20.
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号