首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paterson NG  Baker EN 《PloS one》2011,6(7):e22095
The surface of the pneumococcal cell is adorned with virulence factors including pili. The major pilin RrgB, which forms the pilus shaft on pathogenic Streptococcus pneumoniae, comprises four immunoglobulin (Ig)-like domains, each with a common CnaB topology. The three C-terminal domains are each stabilized by internal Lys-Asn isopeptide bonds, formed autocatalytically with the aid of an essential Glu residue. The structure and orientation of the crucial N-terminal domain, which provides the covalent linkage to the next pilin subunit in the shaft, however, remain incompletely characterised. We report the crystal structure of full length RrgB, solved by X-ray crystallography at 2.8 Å resolution. The N-terminal (D1) domain makes few contacts with the rest of the RrgB structure, and has higher B-factors. This may explain why D1 is readily lost by proteolysis, as are the N-terminal domains of many major pilins. D1 is also found to have a triad of Lys, Asn and Glu residues in the same topological positions as in the other domains, yet mass spectrometry and the crystal structure show that no internal isopeptide bond is formed. We show that this is because β-strand G of D1, which carries the Asn residue, diverges from β-strand A, carrying the Lys residue, such that these residues are too far apart for bond formation. Strand G also carries the YPKN motif that provides the essential Lys residue for the sortase-mediated intermolecular linkages along the pilus shaft. Interaction with the sortase and formation of the intermolecular linkage could result in a change in the orientation of this strand, explaining why isopeptide bond formation in the N-terminal domains of some major pilins appears to take place only upon assembly of the pili.  相似文献   

2.
The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.  相似文献   

3.
Pili are indispensable in adhesion of encapsulated Neisseria meningitidis (MC) to eukaryotic cells. Intrastrain variability with respect to the degree of adhesion is the result of pilin antigenic variation. We have localized the region responsible for this variability to the 20-amino-acid hypervariable domain of pilin. The replacement of an aspartic acid, located in the hypervariable region of a low-adhesive variant by a lysine restored high adhesiveness. To assess whether hyperadhesiveness confered by some pilin variants was related to the generation of a new pilus-associated ligand, high- and low-adhesive variants were purified. In a first step, low- and high-adhesive pilins were fused to maltose binding protein (MBP). These hybrid proteins bound epithelial cells with the same affinity. Truncated MBP pilin fusions identified a cell-binding domain within the 77 residues of the N-terminal end of mature pilin. This region of the protein is common to low- and high-adhesive derivatives used in this work, thus eliminating the possibility that high adhesiveness confered by some pilin variants was because of the generation of a new pilus-associated ligand. Electron-microscopic examination showed that low-adhesive derivatives expressed long and distinct pili and adhered as single cells. In contrast, pili of derivatives expressing high-adhesive pilins, either wild type or mutagenized from the low-adhesive variant, formed large bundles which bound bacteria and caused them to grow as colonies on infected mono-layers. These data demonstrate that aggregative pili promote high adhesiveness of encapsulated MC.  相似文献   

4.
Successful adherence, colonization, and survival of Gram‐positive bacteria require surface proteins, and multiprotein assemblies called pili. These surface appendages are attractive pharmacotherapeutic targets and understanding their assembly mechanisms is essential for identifying a new class of ‘anti‐infectives’ that do not elicit microbial resistance. Molecular details of the Gram‐negative pilus assembly are available indepth, but the Gram‐positive pilus biogenesis is still an emerging field and investigations continue to reveal novel insights into this process. Pilus biogenesis in Gram‐positive bacteria is a biphasic process that requires enzymes called pilus‐sortases for assembly and a housekeeping sortase for covalent attachment of the assembled pilus to the peptidoglycan cell wall. Emerging structural and functional data indicate that there are at least two groups of Gram‐positive pili, which require either the Class C sortase or Class B sortase in conjunction with LepA/SipA protein for major pilin polymerization. This observation suggests two distinct modes of sortase‐mediated pilus biogenesis in Gram‐positive bacteria. Here we review the structural and functional biology of the pilus‐sortases from select streptococcal pilus systems and their role in Gram‐positive pilus assembly.  相似文献   

5.
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8?M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-? axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.  相似文献   

6.
CS1 pili serve as the prototype for a large class of serologically distinct pili associated with enterotoxigenic Escherichia coli that cause diarrhoea in humans. The four genes essential for CS1 pilus morphogenesis, cooB, A, C and D, are arranged in an operon and encode structural and assembly proteins unlike those of other pilus systems commonly associated with Gram-negative bacteria. CS1 pili are composed primarily of the major pilin subunit, CooA, which determines the serological type of the pilus. The major pilin subunit is assembled into pili by the proteins CooB, CooC and CooD. CooD is both a minor component found at the pilus tip and an essential assembly protein, whereas CooC is an outer membrane protein thought to be involved in pilin transport. CooB is a novel periplasmic chaperone-like protein that forms intermolecular complexes with and stabilizes the major and minor pilins. Unlike other pilin chaperones, CooB also stabilizes the outer membrane component of the assembly system, CooC. The proteins of CS1 pili have no significant homology to those of the well-characterized Pap (pyelonephritis-associated) pili and related systems, although most of the features of pilus morphogenesis are similar. Therefore, these appear to be among the rare cases of convergent evolution. Thus, for CS1 pili, enterotoxigenic E. coli use new protein 'tools' in the old 'trade' of forming functional pili.  相似文献   

7.
The pseudopilin PulG is one of several essential components of the type II pullulanase secretion machinery (the Pul secreton) of the Gram-negative bacterium Klebsiella oxytoca. The sequence of the N-terminal 25 amino acids of the PulG precursor is hydrophobic and very similar to the corresponding region of type IV pilins. The structure of a truncated PulG (lacking the homologous region), as determined by X-ray crystallography, was found to include part of the long N-terminal alpha-helix and the four internal anti-parallel beta-strands that characterize type IV pilins, but PulG lacks the highly variable loop region with a disulphide bond that is found in the latter. When overproduced, PulG forms flexible pili whose structural features, as visualized by electron microscopy, are similar to those of bacterial type IV pili. The average helical repeat comprises 17 PulG subunits and four helical turns. Electron microscopy and molecular modelling show that PulG probably assembles into left-handed helical pili with the long N-terminal alpha-helix tightly packed in the centre of the pilus. As in the type IV pilins, the hydrophobic N-terminal part of the PulG alpha-helix is necessary for its assembly. Subtle sequence variations within this highly conserved segment seem to determine whether or not a type IV pilin can be assembled into pili by the Pul secreton.  相似文献   

8.
Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Gram-positive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface.  相似文献   

9.
Many surface proteins in Gram-positive bacteria are covalently linked to the cell wall through a transpeptidation reaction catalysed by the enzyme sortase. Corynebacterium diphtheriae encodes six sortases, five of which are devoted to the assembly of three distinct types of pilus fibres--SrtA for the SpaA-type pilus, SrtB/SrtC for the SpaD-type pilus, and SrtD/SrtE for the SpaH-type pilus. We demonstrate here the function of SrtF, the so-called housekeeping sortase, in the cell wall anchoring of pili. We show that a multiple deletion mutant strain expressing only SrtA secretes a large portion of SpaA polymers into the culture medium, with concomitant decrease in the cell wall-linked pili. The same phenotype is observed with the mutant that is missing SrtF alone. By contrast, a strain that expresses only SrtF displays surface-linked pilins but no polymers. Therefore, SrtF can catalyse the cell wall anchoring of pilin monomers as well as pili, but it does not polymerize pilins. We show that SrtA and SrtF together generate wild-type levels of the SpaA-type pilus on the bacterial surface. Furthermore, by regulating the expression of SpaA in the cell, we demonstrate that the SrtF function becomes critical when the SpaA level is sufficiently high. Together, these findings provide key evidence for a two-stage model of pilus assembly: pilins are first polymerized by a pilus-specific sortase, and the resulting fibre is then attached to the cell wall by either the cognate sortase or the housekeeping sortase.  相似文献   

10.
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.  相似文献   

11.
Recently, we reported the degree of N-terminal processing within the cytoplasmic membranes of three mutant pilins from Pseudomonas aeruginosa PAK with respect to leader peptide removal and the methylation of the N-terminal phenylalanine (B. L. Pasloske and W. Paranchych, Mol. Microbiol. 2:489-495, 1988). The results of those experiments showed that the deletion of 4 or 8 amino acids within the highly conserved N terminus greatly inhibited leader peptide removal. On the other hand, the mutation of the glutamate at position 5 to a lysine permitted leader peptide cleavage but inhibited transmethylase activity. In this report, we have examined the effects of these mutant pilins upon pilus assembly in a P. aeruginosa PAO host with or without the chromosomally encoded pilin gene present. Pilins with deletions of 4 or 8 amino acids in the N-terminal region were not incorporated into pili. Interestingly, pilin subunits containing the glutamate-to-lysine mutation were incorporated into compound pili together with PAO wild-type subunits. However, the mutant pilins were unable to polymerize as a homopolymer. When wild-type PAK and PAO pilin subunits were expressed in the same bacterial strain, the pilin subunits assembled into homopolymeric pili containing one or the other type of subunit.  相似文献   

12.
Bacterial pili are long, multi-subunit protein assemblies that extend from bacterial surfaces, mediating adhesion and colonisation. The recently characterised pili expressed by Gram-positive pathogens represent a novel variation; completely covalent polymers in which sortase-mediated isopeptide bonds link successive pilin subunits. Recent structural studies of the component pilins have revealed a common pattern of tandem immunoglobulin (Ig)-like domains, joined end-on-end. This long thin assembly is further stabilised by autocatalytically generated isopeptide bond crosslinks within the domains, joining Lys and Asn(or Asp) side chains. Specialised subunits at the tip and the base complete the assembly, with the tip pilins presenting novel adhesive structures.  相似文献   

13.
Adherence to host tissues mediated by pili is pivotal in the establishment of infection by many bacterial pathogens. Corynebacterium diphtheriae assembles on its surface three distinct pilus structures. The function and the mechanism of how various pili mediate adherence, however, have remained poorly understood. Here we show that the SpaA-type pilus is sufficient for the specific adherence of corynebacteria to human pharyngeal epithelial cells. The deletion of the spaA gene, which encodes the major pilin forming the pilus shaft, abolishes pilus assembly but not adherence to pharyngeal cells. In contrast, adherence is greatly diminished when either minor pilin SpaB or SpaC is absent. Antibodies directed against either SpaB or SpaC block bacterial adherence. Consistent with a direct role of the minor pilins, latex beads coated with SpaB or SpaC protein bind specifically to pharyngeal cells. Therefore, tissue tropism of corynebacteria for pharyngeal cells is governed by specific minor pilins. Importantly, immunoelectron microscopy and immunofluorescence studies reveal clusters of minor pilins that are anchored to cell surface in the absence of a pilus shaft. Thus, the minor pilins may also be cell wall anchored in addition to their incorporation into pilus structures that could facilitate tight binding to host cells during bacterial infection.  相似文献   

14.
Pili are surface-exposed virulence factors involved in the adhesion of bacteria to host cells. The human pathogen Streptococcus pneumoniae expresses a pilus composed of three structural proteins, RrgA, RrgB, and RrgC, and requires the action of three transpeptidase enzymes, sortases SrtC-1, SrtC-2, and SrtC-3, to covalently associate the Rrg pilins. Using a recombinant protein expression platform, we have previously shown the requirement of SrtC-1 in RrgB fiber formation and the association of RrgB with RrgC. To gain insights into the substrate specificities of the two other sortases, which remain controversial, we have exploited the same robust strategy by testing various combinations of pilins and sortases coexpressed in Escherichia coli. We demonstrate that SrtC-2 catalyzes the formation of both RrgA-RrgB and RrgB-RrgC complexes. The deletion and swapping of the RrgA-YPRTG and RrgB-IPQTG sorting motifs indicate that SrtC-2 preferentially recognizes RrgA and attaches it to the pilin motif lysine 183 of RrgB. Finally, SrtC-2 is also able to catalyze the multimerization of RrgA through the C-terminal D4 domains. Similar experiments have been performed with SrtC-3, which catalyzes the formation of RrgB-RrgC and RrgB-RrgA complexes. Altogether, these results provide evidence of the molecular mechanisms of association of RrgA and RrgC with the RrgB fiber shaft by SrtC-2 and SrtC-3 and lead to a revised model of the pneumococcal pilus architecture accounting for the respective contribution of each sortase.  相似文献   

15.
Different surface organelles contribute to specific interactions of a pathogen with host tissues or infectious partners. Multiple pilus gene clusters potentially encoding different surface structures have been identified in several gram-positive bacterial genomes sequenced to date, including actinomycetales, clostridia, corynebacteria, and streptococci. Corynebacterium diphtheriae has been shown to assemble a pilus structure, with sortase SrtA essential for the assembly of a major subunit SpaA and two minor proteins, SpaB and SpaC. We report here the characterization of a second pilus consisting of SpaD, SpaE, and SpaF, of which SpaD and SpaE form the pilus shaft and SpaF may be located at the pilus tip. The structure of the SpaDEF pilus contains no SpaABC pilins as detected by immunoelectron microscopy. Neither deletion of spaA nor sortase srtA abolishes SpaDEF pilus formation. The assembly of the SpaDEF pilus requires specific sortases located within the SpaDEF pilus gene cluster. Although either sortase SrtB or SrtC is sufficient to polymerize SpaDF, the incorporation of SpaE into the SpaD pili requires sortase SrtB. In addition, an alanine in place of the lysine of the SpaD pilin motif abrogates pilus polymerization. Thus, SpaD, SpaE, and SpaF constitute a different pilus structure that is independently assembled and morphologically distinct from the SpaABC pili and possibly other pili of C. diphtheriae.  相似文献   

16.
Pili or fimbriae, which are filamentous structures present on the surface of bacteria, were purified from a periodontal pathogen, Porphyromonas gingivalis, in 1980s. The protein component of pili (stalk pilin), which is its major component, was named FimA; it has a molecular weight of approximately 41 kDa. Because the molecular weight of the pilin from P. gingivalis is twice that of pilins from other bacterial pili, the P. gingivalis Fim pili were suggested to be formed via a novel mechanism. In earlier studies, we reported that the FimA pilin is secreted on the cell surface as a lipoprotein precursor, and the subsequent N-terminal processing of the FimA precursor by arginine-specific proteases is necessary for Fim pili formation. The crystal structures of FimA and its related proteins were determined recently, which show that Fim pili are formed by a protease-mediated strand-exchange mechanism. The most recent study conducted by us, wherein we performed cryoelectron microscopy of the pilus structure, provided evidence in support of this mechanism. As the P. gingivalis Fim pili are formed through novel transport and assembly mechanisms, such pili are now designated as Type V pili. Surface lipoproteins, including the anchor pilin FimB of Fim pili that are present on the outer membrane, have been detected in certain Gram-negative bacteria. Here, we describe the assembly mechanisms of pili, including those of Type V and other pili, as well as the lipoprotein transport mechanisms.  相似文献   

17.
Type 1 pili were purified from a Klebsiella pneumoniae strain isolated from a human urinary tract infection. The pili were removed from the bacteria by mechanical shearing, precipitated out of solution by ammonium sulfate, solubilized in a deoxycholate-containing buffer, and finally purified by gel filtration. Chemical characterization of the isolated pili revealed a single protein subunit (pilin) which had a Mr = 21,500. Amino acid compositional analysis revealed a high content of residues that contribute significantly to secondary structure. Automated sequence analysis of the NH2-terminal region revealed a striking homology (79% identity) with type 1 pili of Escherichia coli. In contrast, NH2-terminal sequence comparison of K. pneumoniae pilin with other previously reported bacterial pilins showed no significant homology. No immunological cross-reactivity was detectable between E. coli and K. pneumoniae pili when tested by Ouchterlony double immunodiffusion or by rocket immunoelectrophoresis. The results of this study, when compared to other studies of bacterial pili, indicate that type 1 pili from members of the Enterobacteriaceae share morphological similarities and that their monomeric subunits are chemically similar. In addition, these results give strong evidence that the type 1 pilins of the enteric bacteria represent a separate class of homologous pilins.  相似文献   

18.
Adherence ofHaemophilus influenzae type b (Hib) to human oropharyngeal cells is mediated by pili which are proteinaceous filaments that extend outward from the bacterial cell surface. Pili from Hib strain Eagan were purified, and the primary structure of the major subunit, pilin, was determined. Sequencing of overlapping peptides showed the mature protein to be comprised of 196 amino acids and to have an Mr of 21,152. The amino terminal sequence was found to be homologous with the sequence previously reported for Hib strain M43 and also to have significant homology to pilins of other gram-negative pathogenic bacteria. Furthermore, Hib pilin had two cysteinyl residues in the amino terminal portion of the protein which were separated by 40 residues (positions 21 and 61); a motif found in other bacterial pilins. The data show that Hib pilin has structural features common to other bacterial pilins.  相似文献   

19.
Neisseria meningitidis pili are filamentous protein structures that are essential adhesins in capsulate bacteria. Pili of adhesion variants of meningococcal strain C311 contain glycosyl residues on pilin (PilE), their major structural subunit. Despite the presence of three potential N -linked glycosylation sites, none appears to be occupied in these pilins. Instead, a novel O -linked trisaccharide substituent, not previously found as a constituent of glycoproteins, is present within a peptide spanning amino acid residues 45 to 73 of the PilE molecule. This structure contains a terminal 1-4-linked digalactose moiety covalently linked to a 2,4-diacetamido-2,4,6-trideoxyhexose sugar which is directly attached to pilin. Pilins derived from galactose epimerase ( galE ) mutants lack the digalactosyl moiety, but retain the diacetamidotrideoxyhexose substitution. Both parental (#3) pilins and those derived from a hyper-adherent variant (#16) contained identical sugar substitutions in this region of pilin, and galE mutants of #3 were similar to the parental phenotype in their adherence to host cells. These studies have confirmed our previous observations that meningococcal pili are glycosylated and provided the first structural evidence for the presence of covalently linked carbohydrate on pili. In addition, they have revealed a completely novel protein/saccharide linkage.  相似文献   

20.
Gram-positive bacteria assemble pili through class C sortase enzymes specialized in polymerizing pilin subunits into covalently linked, high-molecular-weight, elongated structures. Here we report the crystal structures of two class C sortases (SrtC1 and SrtC2) from Group B Streptococcus (GBS) Pilus Island 1. The structures show that both sortases are comprised of two domains: an 8-stranded β-barrel catalytic core conserved among all sortase family members and a flexible N-terminal region made of two α-helices followed by a loop, known as the lid, which acts as a pseudo-substrate. In vitro experiments performed with recombinant SrtC enzymes lacking the N-terminal portion demonstrate that this region of the enzyme is dispensable for catalysis but may have key roles in substrate specificity and regulation. Moreover, in vitro FRET-based assays show that the LPXTG motif common to many sortase substrates is not the sole determinant of sortase C specificity during pilin protein recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号