首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A fragment of the gene des3-1 encoding 3 fatty acid desaturase was cloned from a cDNA library of the unicellular green galophilic alga Dunaliella salina. The comparative phylogenetic analysis of 3-desaturase amino acid sequences from diverse organisms placed the desaturase of D. salina between cyanobacteria and higher plants in the evolutionary range of desaturases. The expression of des3-1 was studied in D. salina cells exposed to low temperatures, high irradiance, and high CO2 concentrations. Lowering the external temperature from 32 to 22°C produced a transient increase in the level of specific mRNA. Considerable accumulation of mRNA for 3-desaturase was also observed when CO2 concentration in gas–air mixture was raised from 2 to 10%. An irradiation increase from 70 to 500 mol/(m2 s) did not affect the level of specific mRNA. The latter evidence presumes that in Dunaliella cells, this desaturase is probably located in the endoplasmic reticulum, rather than in the chloroplast.  相似文献   

3.
Oxidative stress and apoptosis facilitation in the developing central nervous system (CNS) have been inferred as two mechanisms related to lead’s neurotoxicity, and excessive reactive oxygen species (ROS) can promote oxidative stress and apoptosis facilitation. Few studies systematically investigated the potential relationship among oxidative stress, ROS generation, and apoptosis facilitation after lead exposure in earlier life as a whole. To better understand the adverse effect on the developing central nervous system (CNS) after lead exposure during pregnancy and lactation, the indexes of oxidative stress, apoptosis status, and Bax and Bcl-2 expression of offspring rats’ hippocampus were determined. Pregnant rats were randomly divided into four groups and given free access to drinking water which contained 0 %, 0.05 %, 0.1 %, and 0.2 % Pb(AC)2 respectively from gestation day 0 to postnatal day 21 (PND21). Results showed that ROS and malondialdehyde level of either PND7 or PND21 pups’ hippocampus were significantly raised; reduced glutathione level and superoxide dismutase activity were obviously decreased following the increase of blood and brain lead level. Similar to apoptotic indexes, Bax/Bcl-2 ratio increased after 0.1 % and 0.2 % Pb(AC)2 exposure, especially for the pups on PND7. Comparing with cortex, the hippocampus seemed much more sensitive to damage induced by lead. We concluded that the disruption of pro-oxidant and antioxidant balance and apoptosis facilitation could be associated with the mechanisms of neurotoxicity after lead exposure in earlier life.  相似文献   

4.
The survival and persistence of Ralstonia solanacearum biovar 2 in temperate climates is still poorly understood. To assess whether genomic variants of the organism show adaptation to local conditions, we compared the behaviour of environmental strain KZR-5, which underwent a deletion of the 17.6?kb genomic island PGI-1, with that of environmental strain KZR-1 and potato-derived strains 1609 and 715. PGI-1 harbours two genes of potential ecological relevance, i.e. one encoding a hypothetical protein with a RelA/SpoT domain and one a putative cellobiohydrolase. We thus assessed bacterial fate under conditions of amino acid starvation, during growth, upon incubation at low temperature and invasion of tomato plants. In contrast to the other strains, environmental strain KZR-5 did not grow on media that induce amino acid starvation. In addition, its maximum growth rate at 28°C in rich medium was significantly reduced. On the other hand, long-term survival at 4°C was significantly enhanced as compared to that of strains 1609, 715 and KZR-1. Although strain KZR-5 showed growth rates (at 28°C) in two different media, which were similar to those of strains 1609 and 715, its ability to compete with these strains under these conditions was reduced. In singly inoculated tomato plants, no significant differences in invasiveness were observed among strains KZR-5, KZR-1, 1609 and 715. However, reduced competitiveness of strain KZR-5 was found in experiments on tomato plant colonisation and wilting when using 1:1 or 5:1 mixtures of strains. The potential role of PGI-1 in plant invasion, response to stress and growth in competition at high and moderate temperatures is discussed.  相似文献   

5.
Peng  Zhenying  Ruan  Jian  Tian  Haiying  Shan  Lei  Meng  Jingjing  Guo  Feng  Zhang  Zhimeng  Ding  Hong  Wan  Shubo  Li  Xinguo 《Plant Molecular Biology Reporter》2020,38(2):209-221
Plant Molecular Biology Reporter - The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much...  相似文献   

6.
7.
We report the expression profile of acyl-lipid Δ12-desaturase (desA) gene from Synechocystis sp. PCC6803 and its effect on cell membrane lipid composition and cold tolerance in prokaryotic (Escherichia coli) and eukaryotic (Solanum tuberosum) cells. For this purpose, a hybrid of desA and reporter gene encoding thermostable lichenase (licBM3) was constructed and used to transform these cells. The expression of this hybrid gene was measured using qualitative (Petri dish test, electrophoregram and zymogram) and quantitative methods (spectrometry and gas liquid chromatography assays). The maximum level of linoleic acid in the bacterial cells containing hybrid gene was 1.9% of total fatty acids. Cold stress tolerance assays using plant damage index and growth parameters showed that cold tolerance was enhanced in primary transgenic lines because of increased unsaturated fatty acid concentration in their lipids. The greatest content of 18:2 and 18:3 fatty acids in primary transgenic plants was observed for lines 2 (73%) and 3 (41%). Finally, our results showed that desaturase could enhance tolerance to cold stress in potato, and desaturase and lichenase retain their functionality in the structure of the hybrid protein where the enzymatic activity of target gene product was higher than in the case of reporter lichenase gene absence in the construction.  相似文献   

8.
9.
This study examined whether triiodo-L-thyronine (T3) affects the expression of the major intercellular channel protein, connexin-43, and contractile protein alpha-sarcomeric actin. Cultured cardiomyocytes from newborn rats were treated on day three in culture with 10 or 100 nM T3 and examined 48 and 72 h thereafter. Treated and untreated cells were examined by immunofluorescence and electron microscopy. Expression levels of Cx43 and sarcomeric alpha-actin were monitored by Western blot analysis. Immunofluorescence labeling showed cell membrane location of Cx43 in punctuate gap junctions, whereby fluorescence signal area was significantly higher in cultured cardiomyocytes exposed to T3. This correlated with electron microscopical findings showing increased numbers and size of gap junction profiles, as well as with a significant dose-dependent increase of Cx43 expression detected by Western blot. Immunofluorescence of sarcomeric a-actin was enhanced and its expression increased dose- and time-dependently in T3-treated cultured heart myocytes. However, exposure to the higher dosage (100 nM) of T3 caused mild disintegration of sarcomeric a-actin in some myocytes, suggesting an over-dosage. The results indicate that T3 up-regulates Cx43 and accelerates gap junction formation in cultured neonatal cardiomyocytes. They suggest that thyroid status cannot only modulate the mechanical function of cardiomyocytes but also cell-to-cell communication essential for myocardial electrical and metabolic synchronizations.  相似文献   

10.
Advances in transgenic technology as well as in the genetics of Alzheimer disease (AD) have allowed the establishment of animal models that reproduce amyloid-beta plaques and neurofibrillary tangles, the main pathological hallmarks of AD. Among these models, 3xTg-AD mice harboring PS1 M146V, APP Swe and tau P301L human transgenes provided the model that most closely mimics human AD features. Although cortical cultures from 3xTg-AD mice have been shown to present disturbances in intracellular [Ca2+] homeostasis, the development of AD pathology in vitro has not been previously evaluated. In the current work, we determined the temporal profile for amyloid precursor protein, amyloid-β and tau expression in primary cortical cultures from 3xTg-AD mice. Immunocytochemistry and Western blot analysis showed an increased expression of these proteins as well as several phosphorylated tau isoforms with time in culture. Alterations in calcium homeostasis and cholinergic and glutamatergic responses were also observed early in vitro. Thus, 3x-TgAD cortical neurons in vitro provide an exceptional tool to investigate pharmacological approaches as well as the cellular basis for AD and related diseases.  相似文献   

11.
The reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1) signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of free ASK1 which coincides with increased oxidative stress. Here, we tested the hypothesis that: 1) covalent interactions exist among three identified proteins constituting the ASK1 signaling complex; 2) in normal unstressed cells the ASK1, 14-3-3ζ and thioredoxin (Trx) proteins simultaneously engage in a tripartite complex formation; 3) Klotho’s stabilizing effect on the complex relied solely on 14-3-3ζ expression and its apparent phosphorylation and dimerization changes. To verify the hypothesis, we performed 14-3-3ζ siRNA knock-down experiments in conjunction with cell-based assays to measure ASK1-client protein interactions in the presence and absence of Klotho, and with or without an oxidant such as rotenone. Our results show that Klotho activity induces posttranslational modifications in the complex targeting 14-3-3ζ monomer/dimer changes to effectively protect against ASK1 oxidation and dissociation. This is the first observation implicating all three proteins constituting the ASK1 signaling complex in close proximity.  相似文献   

12.
In order to identify the function of late embryogenesis abundant (LEA) genes, in vitro functional analyses were performed using an Escherichia coli heterologous expression system. Three soybean late embryogenesis abundant (LEA) genes, PMll (GenBank accession No. AF004805; group 1), PM30(AF117884; group 3), and ZLDE-2 (AY351918; group 2), were cloned and expressed in a pET-28a system.The gene products were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. E. coli cells containing the recombinant plasmids or empty vector as controls were treated by salt and low temperature stress. Compared with control cells, the E. coli cells expressing either PMll or PM30 showed a shorter lag period and improved growth when transferred to LB (Luria-Bertani) liquid media containing 800 mmol/L NaC1 or 700 mmol/L KC1 or after 4℃ treatment. E. coli cells expressing ZLDE-2 did not show obvious growth improvement both in either high KC1 medium or after 4℃ treatment. The results indicate that the E. coli expression system is a simple, useful method to identify the functions of some stress-tolerant genes from plants.  相似文献   

13.
Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer’s disease (AD)-mediated stress. Pharmacological augmentation of mitochondrial ROS increases Sirt3 expression in primary hippocampal culture with SIRT3 over-expression being neuroprotective. Furthermore, Sirt3 expression mirrors spatiotemporal deposition of β-amyloid in an AD mouse model and is also upregulated in AD patient temporal neocortex. Thus, our data suggest a role for SIRT3 in mechanisms sensing and tackling ROS- and AD-mediated mitochondrial stress.  相似文献   

14.

Background

A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs). A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E) 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed.

Methodology/Principal Findings

We used immunoblotting and quantitative real-time PCR (qRT-PCR) to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7), microRNA-375 (miR-375) and microRNA-451 (miR-451), which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses.

Conclusions/Significance

These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.  相似文献   

15.
Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.  相似文献   

16.
The ω-3 polyunsaturated fatty acids account for more than 50% of total fatty acids in the green microalga Chlamydomonas reinhardtii, where they are present in both plastidic and extraplastidic membranes. In an effort to elucidate the lipid desaturation pathways in this model alga, a mutant with more than 65% reduction in total ω-3 fatty acids was isolated by screening an insertional mutant library using gas chromatography-based analysis of total fatty acids of cell pellets. Molecular genetics analyses revealed the insertion of a TOC1 transposon 113 bp upstream of the ATG start codon of a putative ω-3 desaturase (CrFAD7; locus Cre01.g038600). Nuclear genetic complementation of crfad7 using genomic DNA containing CrFAD7 restored the wild-type fatty acid profile. Under standard growth conditions, the mutant is indistinguishable from the wild type except for the fatty acid difference, but when exposed to short-term heat stress, its photosynthesis activity is more thermotolerant than the wild type. A comparative lipidomic analysis of the crfad7 mutant and the wild type revealed reductions in all ω-3 fatty acid-containing plastidic and extraplastidic glycerolipid molecular species. CrFAD7 was localized to the plastid by immunofluorescence in situ hybridization. Transformation of the crfad7 plastidial genome with a codon-optimized CrFAD7 restored the ω-3 fatty acid content of both plastidic and extraplastidic lipids. These results show that CrFAD7 is the only ω-3 fatty acid desaturase expressed in C. reinhardtii, and we discuss possible mechanisms of how a plastid-located desaturase may impact the ω-3 fatty acid content of extraplastidic lipids.Research on lipid metabolism in microalgae has flourished in recent years due to their potential as a rich source of ω-3 fatty acids (Guschina and Harwood, 2006; Khozin-Goldberg et al., 2011) and as a feedstock for biodiesel (Hu et al., 2008b; Rosenberg et al., 2008; Beer et al., 2009; Radakovits et al., 2010; Wijffels and Barbosa, 2010; Merchant et al., 2012; Work et al., 2012). Oils produced by microalgae resemble that of plants (Hu et al., 2008b), with the exception that they contain higher proportions of polyunsaturated fatty acid (PUFA) species (Harwood and Guschina, 2009). Desaturation of acyl groups in glycerolipids is catalyzed by fatty acid desaturases (FADs), which insert a C=C bond at a specifically defined position of an acyl chain (Shanklin and Cahoon, 1998). The degree of unsaturation of fatty acid components largely determines the chemical property and thus the utility of the oils produced. FADs have been one of the major tools for the genetic engineering of oil composition in land crops (Shanklin and Cahoon, 1998; Napier et al., 1999). In view of biodiesel applications, low PUFA content is advantageous in algal oil because of oxidation issues (Frankel, 1991).With the suites of sophisticated molecular genetic and genomic tools developed in the green microalga Chlamydomonas reinhardtii and the existence of substantial literature related to its cell biology, physiology, and biochemistry, this organism has emerged as a major model for research on algal oil (Radakovits et al., 2010; Merchant et al., 2012; Liu and Benning, 2013). Although the understanding of lipid metabolism in C. reinhardtii largely relies on sequence homologies to other models (Riekhof et al., 2005) and is still rather limited compared with the model plant Arabidopsis (Arabidopsis thaliana; Li-Beisson et al., 2010), functional studies based on mutants have started to provide important insights into the biosynthesis and turnover of membrane and storage lipids in this model alga (Riekhof et al., 2005; Work et al., 2010; Fan et al., 2011; Goodson et al., 2011; Boyle et al., 2012; Li et al., 2012a, 2012b; Yoon et al., 2012).In C. reinhardtii, C16 and C18 PUFAs (ω-3 + ω-6) make up to 60 mol% of total membrane fatty acids, of which more than 80% are ω-3 species (Giroud and Eichenberger, 1988; Siaut et al., 2011). Biochemical evidence for lipid-linked desaturation of fatty acyl chains has been established in C. reinhardtii over 20 years (Giroud and Eichenberger, 1989), but only two C. reinhardtii mutants affected in fatty acid desaturation have been described to date. These are crfad6 (hf-9), an insertional mutant for the plastidial ω-6 desaturase FAD6 (Sato et al., 1995), and microRNA-based silenced lines for the Δ4 desaturase CrΔ4FAD (Zäuner et al., 2012). The putative microsomal Δ12 desaturase FAD2 (Chi et al., 2008) and front-end ω-13 desaturase (Kajikawa et al., 2006) have been characterized by heterologous expression in the methylotrophic yeast Pichia pastoris, but no mutant is available. Moreover, although ω-3 PUFA is the most abundant fatty acid class in C. reinhardtii, the ω-3 desaturase remains uncharacterized, and no mutant with specific reduction in ω-3 content has been isolated so far.In Arabidopsis and C. reinhardtii, ω-3 PUFAs are present in both plastidic and extraplastidic lipids such as monogalactosyldiacylglycerol (MGDG) and phosphatidylethanolamine (PtdEtn), respectively (Mendiola-Morgenthaler et al., 1985; Giroud et al., 1988). While in plants there are distinct genes for plastidial and extraplastidial ω-3 FADs (Wallis and Browse, 2002), only one putative ω-3 desaturase seems encoded in the C. reinhardtii genome (version 5.0; Merchant et al., 2007). This raises several intriguing possibilities, including the existence of a mechanism to export ω-3 acyls from their site of biogenesis to other membranes or a dual localization of the ω-3 desaturase homolog (plastid and endoplasmic reticulum [ER]). In this study, we report the identification and characterization of a C. reinhardtii mutant defective in the promoter region of the putative ω-3 FAD encoded by the Cre01.g038600 locus. We show that while this enzyme is localized to plastids, impairment in its expression leads to a reduction of ω-3 fatty acids acylated to both plastidial and ER lipids. Additionally, using plastidial transformation of the mutant, it is demonstrated that the location of this desaturase in the plastid alone is sufficient to ensure normal ω-3 fatty acid content in extraplastidic lipids. Possible acyl desaturation and trafficking mechanisms implied by these findings are discussed.  相似文献   

17.
Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.Abiotic stresses such as drought, salinity, and adverse temperatures are major limiting factors for plant growth and reproduction. To respond to environmental cues, plants have evolved a variety of biochemical and physiological mechanisms to adapt to adverse conditions during their growth and development (Boyer, 1982). Abscisic acid (ABA) has been recognized as a stress hormone that coordinates the complex networks of stress responses. Under drought or salt stress conditions, plant endogenous ABA level can rise to about 40-fold, triggering the closure of stomata and accumulating reactive oxygen species (ROS), dehydrins, and late embryogenesis abundant proteins for osmotic adjustment (Verslues et al., 2006). The endogenous ABA level is determined by ABA biosynthesis, catabolism, and release of ABA from ABA-Glc conjugates (Nambara and Marion-Poll, 2005; Lee et al., 2006). Therefore, identification of all the components affecting active ABA content is essential for a complete understanding of the action of the hormone.Numerous ABA biosynthetic genes have been identified through mutant analysis, such as maize (Zea mays) viviparous mutants vp2, vp5, vp7, vp9, vp14, w3, y3, and y9 (Schwartz et al., 1997; Hable et al., 1998; Singh et al., 2003); rice (Oryza sativa) preharvest-sprouting mutants psh1, psh2, psh3, and psh4 (Fang et al., 2008); sunflower (Helianthus annuus) nondormant mutant nd-1 (Conti et al., 2004); Arabidopsis (Arabidopsis thaliana) ABA- and nonphotochemical quenching (NPQ)-deficient mutants aba1, aba2, aba3, aba4, npq1, npq2, b1, b2, and nced3 (Havaux et al., 2000; Xiong et al., 2001; Tian et al., 2003; Barrero et al., 2005; Kim and DellaPenna, 2006; North et al., 2007); and tomato (Solanum lycopersicum) white-flower mutant wf (Galpaz et al., 2006; Supplemental Fig. S1). The mutants unable to biosynthesize carotenoid precursors for endogenous ABA synthesis often produced preharvest-sprouting seeds and wilted or white leaves (Gubler et al., 2005; Nambara and Marion-Poll, 2005; Finch-Savage and Leubner-Metzger, 2006).ABA biosynthesis initiates with the synthesis of a C5 building block, isopentenyl pyrophosphate, and its isomer dimethylallyl pyrophosphate through a plastid methylerythritol phosphate pathway (Eisenreich et al., 2001; Hunter, 2007). The three isopentenyl pyrophosphate molecules are then added to dimethylallyl pyrophosphate by geranylgeranyl diphosphate synthase to produce C20 geranylgeranyl diphosphate. Two geranylgeranyl diphosphates are condensed by a committing enzyme, phytoene synthase, to produce colorless C40 carotenoid phytoene, which is then desaturated and isomerized into red-colored lycopene by phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), and Z-ISO and CRTISO isomerases in plants (Isaacson et al., 2002; Park et al., 2002). Subsequently, several cyclization and hydroxylation reactions take place to yield α-carotene and β-carotene (Li et al., 1996; Hable et al., 1998; Park et al., 2002; Miki and Shimamoto, 2004; Fang et al., 2008). Heme-type cytochrome P450-type CYP97 and non-heme-type β-carotene hydroxylase (BCH) are primarily responsible for the hydroxylation of α-carotene and β-carotene to produce lutein and zeaxanthin, respectively. Zeaxanthin, an important component of the xanthophyll cycle, is epoxidated by zeaxanthin epoxidase to produce violaxanthin, and this reaction can be reversed by violaxanthin deepoxidase to increase the xanthophyll cycle for plants to adapt to high-light stress (Johnson et al., 2008). Neoxanthin synthase converts violaxanthin into neoxanthin (North et al., 2007). In chloroplast, 9-cis-epoxycarotenoid dioxygenase (NCED) cleaves violaxanthin and neoxanthin to produce xanthoxin, the direct substrate for ABA synthesis via ABA aldehyde (Schwartz et al., 1997, 2003; Xiong and Zhu, 2003). Increasing evidence suggest that the endogenous ABA level is fine-tuned by differential regulation of the multiple steps of ABA biosynthesis (Seo and Koshiba, 2002; Nambara and Marion-Poll, 2005; Destefano-Beltrán et al., 2006; Thompson et al., 2007; Rodríguez-Gacio et al., 2009; Supplemental Fig. S1).The xanthophyll cycle (light-dependent reversible conversion between violaxanthin and zeaxanthin) is involved in photoprotection in PSII by regulating the nonradiative dissipation of excess absorbed light energy as heat (Gilmore et al., 1994). Mutants with defects in the xanthophyll cycle exhibit a weak photoprotective ability and produce ROS such as hydrogen peroxide (H2O2) when the absorption of light energy exceeds that consumed for photosynthesis (Niyogi, 1999). Under dehydration stress, electrons at a high energy state can easily form ROS, which are toxic to proteins, DNA, and lipids (Mittler, 2002; Apel and Hirt, 2004). However, plants have evolved a variety of biochemical and physiological mechanisms to scavenge ROS, thus maintaining a balance between ROS production and scavenging (Mittler et al., 2004).An association between the xanthophyll cycle and stress tolerance has been reported in plants. In Arabidopsis, overexpression of a bacterial BCH gene caused a specific 2-fold increase in the size of the xanthophyll cycle and enhanced photooxidative tolerance (Davison et al., 2002). Constitutive overexpression of a bacterial BCH gene, crtZ, in tobacco (Nicotiana tabacum) led to increased zeaxanthin synthesis and enhanced UV light tolerance (Götz et al., 2002). In Arabidopsis, zeaxanthin synthesis can be catalyzed by both heme-type CYP97 hydroxylases LUT1 and LUT5 and non-heme-type hydroxylases BCH1 and BCH2, and these two types exhibit some overlapping activities (Tian et al., 2003, 2004; Kim and DellaPenna, 2006). In contrast to the intensive molecular and genetic studies of BCH in Arabidopsis, the counterpart in economically important crops such as rice has not been identified.In this study, we characterized the rice drought-sensitive mutant dsm2, impaired in the gene DSM2 encoding a BCH. Our results demonstrate that DSM2 acts as a putative enzyme catalyzing the biosynthesis of zeaxanthin, one of the precursors of ABA that participates in the process of NPQ. Decreases of NPQ, maximal efficiency of PSII photochemistry (Fv/Fm), xanthophylls, and ABA in the dsm2 mutant suggest that the drought hypersensitivity of dsm2 is due to the combination of impairments in the xanthophyll cycle and ABA synthesis under drought stress conditions. DSM2 overexpression lines, possessing high Fv/Fm and NPQ, showed significantly improved drought resistance at both seedling and reproductive stages. Furthermore, our results imply that DSM2 may be the major member of the BCH family in rice for controlling zeaxanthin synthesis in response to dehydration stresses.  相似文献   

18.
19.
A greenhouse experlment was performed In order to Investigate the effects of dlfferent levels of water stress on leaf water potentlal (ψw), stomatal resistance (rs), protein content and chlorophyll (Chl) content of tomato plants (Lycoperslcon esculentum Mill. cv. Nlkita). Water stress was Induced by addlng polyethylene glycol (PEG 6 000) to the nutrlent solution to reduce the osmotlc potential (ψs). We Investlgated the behavlor of antl-oxldant enzymes, such as catalase (CAT) and superoxide dlsmutase (SOD), durlng the development of water stress. Moderate and severe water stress (i.e. ψs= -0.51 and -1.22 MPa, respectlvely) caused a decrease In ψw for all treated (water-stressed) plants compared with control plants, wlth the reductlon belng more pronounced for severely stressed plants. In addltion, rs was slgnlflcantly affected by the Induced water stress and a decrease in leaf soluble protelns and Chl content was observed. Whereas CAT actlvlty remained constant, SOD actlvlty was increased in water-stressed plants compared wlth unstressed plants. These results Indicate the possible role of SOD as an anti-oxidant protector system for plants under water stress condltlons. Moreover, It suggests the possibllity of using this enzyme as an addltional screening crlterlon for detecting water stress in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号