首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
The Type III secretion system (TTSS) is a protein secretion machinery used by certain gram-negative bacterial pathogens of plants and animals to deliver effector molecules to the host and is at the core of the ability to cause disease. Extensive molecular and biochemical study has revealed the components and their interactions within this system but reductive approaches do not consider the dynamical properties of the system as a whole. In order to gain a better understanding of these dynamical behaviours and to create a basis for the refinement of the experimentally derived knowledge we created a Boolean model of the regulatory interactions within the hrp regulon of Pseudomonas syringae pathovar tomato strain DC3000 Pseudomonas syringae. We compared simulations of the model with experimental data and found them to be largely in accordance, though the hrpV node shows some differences in state changes to that expected. Our simulations also revealed interesting dynamical properties not previously predicted. The model predicts that the hrp regulon is a biologically stable two-state system, with each of the stable states being strongly attractive, a feature indicative of selection for a tightly regulated and responsive system. The model predicts that the state of the GacS/GacA node confers control, a prediction that is consistent with experimental observations that the protein has a role as master regulator. Simulated gene “knock out” experiments with the model predict that HrpL is a central information processing point within the network.  相似文献   

3.
4.
5.
6.
Existing machine-readable resources for large-scale gene regulatory networks usually do not provide context information characterizing the activating conditions for a regulation and how targeted genes are affected. Although this information is essentially required for data interpretation, available networks are often restricted to not condition-dependent, non-quantitative, plain binary interactions as derived from high-throughput screens. In this article, we present a comprehensive Petri net based regulatory network that controls the diauxic shift in Saccharomyces cerevisiae. For 100 specific enzymatic genes, we collected regulations from public databases as well as identified and manually curated >400 relevant scientific articles. The resulting network consists of >300 multi-input regulatory interactions providing (i) activating conditions for the regulators; (ii) semi-quantitative effects on their targets; and (iii) classification of the experimental evidence. The diauxic shift network compiles widespread distributed regulatory information and is available in an easy-to-use machine-readable form. Additionally, we developed a browsable system organizing the network into pathway maps, which allows to inspect and trace the evidence for each annotated regulation in the model.  相似文献   

7.
8.
The sheer complexity of intracellular regulatory networks, which involve signal transducing, metabolic, and genetic circuits, hampers our ability to carry out a quantitative analysis of their functions. Here, we describe an approach that greatly simplifies this type of analysis by capitalizing on the modular organization of such networks. Steady-state responses of the network as a whole are accounted for in terms of intermodular interactions between the modules alone; processes operating solely within modules need not be considered when analysing signal transfer through the entire network. The intermodular interactions are quantified through (local) response coefficients which populate an interaction map (matrix). This matrix can be derived from a biochemical or molecular biological analysis of (macro) molecular interactions that constitute the regulatory network. The approach is illustrated by two examples: (i) mitogenic signalling through the mitogen-activated protein kinase cascade in the epidermal growth factor receptor network and (ii) regulation of ammonium assimilation in Escherichia coli.  相似文献   

9.
Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes.  相似文献   

10.

Background

Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set.

Results

We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants.

Conclusions

The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model.  相似文献   

11.
Complex phenotypes such as the transformation of a normal population of cells into cancerous tissue result from a series of molecular triggers gone awry. We describe a method that searches for a genetic network consistent with expression changes observed under the knock-down of a set of genes that share a common role in the cell, such as a disease phenotype. The method extends the Nested Effects Model of Markowetz et al. (2005) by using a probabilistic factor graph to search for a network representing interactions among these silenced genes. The method also expands the network by attaching new genes at specific downstream points, providing candidates for subsequent perturbations to further characterize the pathway. We investigated an extension provided by the factor graph approach in which the model distinguishes between inhibitory and stimulatory interactions. We found that the extension yielded significant improvements in recovering the structure of simulated and Saccharomyces cerevisae networks. We applied the approach to discover a signaling network among genes involved in a human colon cancer cell invasiveness pathway. The method predicts several genes with new roles in the invasiveness process. We knocked down two genes identified by our approach and found that both knock-downs produce loss of invasive potential in a colon cancer cell line. Nested effects models may be a powerful tool for inferring regulatory connections and genes that operate in normal and disease-related processes.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.  相似文献   

19.
The vulval precursor cell (VPC) fate patterning in Caenorhabditis elegans is a classic model experimental system for cell fate determination and patterning in development. Despite its apparent simplicity (six neighboring cells arranged in one dimension) and many experimental and computational efforts, the patterning strategy and mechanism remain controversial due to incomplete knowledge of the complex biology. Here, we carry out a comprehensive computational analysis and obtain a reservoir of all possible network topologies that are capable of VPC fate patterning under the simulation of various biological environments and regulatory rules. We identify three patterning strategies: sequential induction, morphogen gradient and lateral antagonism, depending on the features of the signal secreted from the anchor cell. The strategy of lateral antagonism, which has not been reported in previous studies of VPC patterning, employs a mutual inhibition of the 2° cell fate in neighboring cells. Robust topologies are built upon minimal topologies with basic patterning strategies and have more flexible and redundant implementations of modular functions. By simulated mutation, we find that all three strategies can reproduce experimental error patterns of mutants. We show that the topology derived by mapping currently known biochemical pathways to our model matches one of our identified functional topologies. Furthermore, our robustness analysis predicts a possible missing link related to the lateral antagonism strategy. Overall, we provide a theoretical atlas of all possible functional networks in varying environments, which may guide novel discoveries of the biological interactions in vulval development of Caenorhabditis elegans and related species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号