共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants undergo cell division throughout their life in order to maintain their growth. It is well known that root and shoot tip of plants possess meristems, which contain quiescent cells. Fluridone (1-methyl-3-phenyl-5-(3-trifluoromethyl (phenyl))-4-(1H)-pyridinone) is an established inhibitor of both ABA and carotenoid biosynthesis. However, the other functions of fluridone remain undiscovered. In this report, we provide experimental evidence that fluridone plays a role in the division of the quiescent centre of the Arabidopsis root meristem. This study examined the effects of exogenous fluridone and ABA on the development of the stem cell niche in Arabidopsis root. We show that fluridone promoted the division of stem cells in the quiescent centre, whereas exogenous ABA suppressed quiescent centre division. Furthermore, we established a novel regulatory function for fluridone by demonstrating that it plays an important role in postembryonic development. 相似文献
2.
3.
Aida M Beis D Heidstra R Willemsen V Blilou I Galinha C Nussaume L Noh YS Amasino R Scheres B 《Cell》2004,119(1):109-120
4.
5.
6.
Rongwen Xi 《Cell Adhesion & Migration》2009,3(4):396-401
Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells.Key words: stem cell, niche, anchorage, cell adhesion, extracellular matrix, cadherin, integrinTissue-specific adult stem cells are characterized by their prolonged self-renewal ability and potentiality to differentiate into one or more types of mature cells. These unique properties make stem cells essential for maintaining tissue homeostasis throughout life. It is generally believed that all adult stem cells reside in specific microenvironments named niches, which provide physical support and produce critical signals to maintain stem cell identity and govern their behavior.1–4 Consequently, intimate stem cell and niche association is a pre-requisite for stem cell''s long-term maintenance and function. How stem cells are kept within the niche is thus an important issue in stem cell biology. Characterization of a number of stem cell niches in model organisms has led to the classification of niches into two general types: stromal niches where stem cells have direct membrane contact with the niche cells and epidermal niches where stem cells are usually associated with the extracellular matrix (ECM), and do not directly contact any fixed stromal cells.1 Studies in Drosophila have led to the cellular and functional verification of the stem cell niche theory5,6 and not surprisingly, have also led to the discovery of the molecular mechanisms anchoring stem cells to the niche. Here I consider recent studies in Drosophila on types of cell adhesions used to anchor stem cells in the niches, and summarize cell adhesion molecules utilized in the most characterized niches in the mammalian tissues, and suggest that cadherin-mediated cell-to-cell adhesion and integrin-mediated cell-to-ECM adhesion are possibly two general mechanisms that function in respective stromal or epidermal niches for stem cell anchorage in diverse organisms. 相似文献
7.
8.
9.
The neural stem cell niche defines a zone in which stem cells are retained after embryonic development for the production
of new cells of the nervous system. This continual supply of new neurons and glia then provides the postnatal and adult brain
with an added capacity for cellular plasticity, albeit one that is restricted to a few specific zones within the brain. Critical
to the maintenance of the stem cell niche are microenvironmental cues and cell-cell interactions that act to balance stem
cell quiescence with proliferation and to direct neurogenesis versus gliogenesis lineage decisions. Ultimately, based on the
location of the niche, stem cells of the adult brain support regeneration in the dentate gyrus of the hippocampus and the
olfactory bulb through neuron replacement. Here, we provide a summary of the current understanding of the organization and
control mechanisms of the neural stem cell niche. 相似文献
10.
Stem cell self-renewal is controlled by concerted actions of niche signals and intrinsic factors in a variety of systems. In the Drosophila ovary, germline stem cells (GSCs) in the niche continuously self-renew and generate differentiated germ cells that interact physically with escort cells (ECs). It has been proposed that escort stem cells (ESCs), which directly contact GSCs, generate differentiated ECs to maintain the EC population. However, it remains unclear whether the differentiation status of germ cells affects EC behavior and how the interaction between ECs and germ cells is regulated. In this study, we have found that ECs can undergo slow cell turnover regardless of their positions, and the lost cells are replenished by their neighboring ECs via self-duplication rather than via stem cells. ECs extend elaborate cellular processes that exhibit extensive interactions with differentiated germ cells. Interestingly, long cellular processes of ECs are absent when GSC progeny fail to differentiate, suggesting that differentiated germ cells are required for the formation or maintenance of EC cellular processes. Disruption of Rho functions leads to the disruption of long EC cellular processes and the accumulation of ill-differentiated single germ cells by increasing BMP signaling activity outside the GSC niche, and also causes gradual EC loss. Therefore, our findings indicate that ECs interact extensively with differentiated germ cells through their elaborate cellular processes and control proper germ cell differentiation. Here, we propose that ECs form a niche that controls GSC lineage differentiation and is maintained by a non-stem cell mechanism. 相似文献
11.
12.
Background
Multilevelness is a defining characteristic of complex systems. For example, in the intestinal tissue the epithelial lining is organized into crypts that are maintained by a niche of stem cells. The behavior of the system 'as a whole' is considered to emerge from the functioning and interactions of its parts. What we are seeking here is a conceptual framework to demonstrate how the "fate" of intestinal crypts is an emergent property that inherently arises from the complex yet robust underlying biology of stem cells. 相似文献13.
Hematopoiesis provides a suitable model for understanding adult stem cells and their niche. Hematopoietic stem cells(HSCs) continuously produce blood cells through orchestrated proliferation, self-renewal, and differentiation in the bone marrow(BM). Within the BM exists a highly organized microenvironment termed "niche" where stem cells reside and are maintained. HSC niche is the first evidence that a microenvironment contributes to protecting stem cell integrity and functionality in mammals. Although multiple models exist, recent progress has principally elucidated the cellular complexity of the HSC niche that maintains and regulates HSCs in BM. Here we introduce the development and summarize the achievements of HSC niche studies. 相似文献
14.
Stem cells remain in specialized niches over the lifespan of the organism in many organs to ensure tissue homeostasis and enable regeneration. How the niche is maintained is not understood, but is probably as important as intrinsic stem cell self-renewal capacity for tissue integrity. We here demonstrate a high degree of phenotypic plasticity of the two main niche cell types, ependymal cells and astrocytes, in the neurogenic lateral ventricle walls in the adult mouse brain. In response to a lesion, astrocytes give rise to ependymal cells and ependymal cells give rise to niche astrocytes. We identify EphB2 forward signaling as a key pathway regulating niche cell plasticity. EphB2 acts downstream of Notch and is required for the maintenance of ependymal cell characteristics, thereby inhibiting the transition from ependymal cell to astrocyte. Our results show that niche cell identity is actively maintained and that niche cells retain a high level of plasticity. 相似文献
15.
Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche 总被引:2,自引:0,他引:2
Yamazaki S Ema H Karlsson G Yamaguchi T Miyoshi H Shioda S Taketo MM Karlsson S Iwama A Nakauchi H 《Cell》2011,147(5):1146-1158
Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-β type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-β/Smad signaling in HSC maintenance. TGF-β is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-β. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-β-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-β. 相似文献
16.
Adams GB Martin RP Alley IR Chabner KT Cohen KS Calvi LM Kronenberg HM Scadden DT 《Nature biotechnology》2007,25(2):238-243
The specialized microenvironment or niche where stem cells reside provides regulatory input governing stem cell function. We tested the hypothesis that targeting the niche might improve stem cell-based therapies using three mouse models that are relevant to clinical uses of hematopoietic stem (HS) cells. We and others previously identified the osteoblast as a component of the adult HS cell niche and established that activation of the parathyroid hormone (PTH) receptor on osteoblasts increases stem cell number. Here we show that pharmacologic use of PTH increases the number of HS cells mobilized into the peripheral blood for stem cell harvests, protects stem cells from repeated exposure to cytotoxic chemotherapy and expands stem cells in transplant recipients. These data provide evidence that the niche may be an attractive target for drug-based stem cell therapeutics. 相似文献
17.
HIF hits Wnt in the stem cell niche 总被引:1,自引:0,他引:1
Kaufman DS 《Nature cell biology》2010,12(10):926-927
18.
Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. GSCs were lost in both male and female gonads of mutants deficient for HS biosynthesis. dally, a Drosophila glypican, is expressed in the female GSC niche cells and is responsible for maintaining the GSC niche. Ectopic expression of dally in the ovary expanded the niche area, showing that dally is required for restriction of the GSC niche space. Interestingly, the other glypican, dally-like, plays a major role in regulating male GSC niche maintenance. We propose that HSPGs define the physical space of the niche by serving as trans coreceptors, mediating short-range signaling by secreted factors. 相似文献
19.
Basal lamina is present in many stem cell niches, but we still have a poor understanding of the role of this and other extracellular matrix (ECM) components. Here, we review current knowledge regarding ECM expression and function in the neural stem cell niche, focusing on the subependymal zone of the adult CNS. An increasing complexity of ECM molecules has been described, and a number of receptors expressed on the stem cells identified. Experiments perturbing the niche using genetics or cytotoxic ablation of the rapidly dividing precursors, or using explant culture models to examine specific growth factors, have been influential in showing how changes in these ECM receptors might regulate neural stem cell behavior. However the role of changes in the matrix itself remains to be determined. The answers will be important, as they will point to the molecules required to engineer niches ex-vivo so as to provide tools for regenerative neuroscience. 相似文献
20.