首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral line system and its innervation were studied in Champsodon snyderi (Champsodontidae). The lateral line system was composed of 43 canal and 935 superficial neuromasts, the former being arranged in 8 lines (7 on the head, 1 on the body). Tubular lateral line scales, clearly differing from the heart-shaped spinoid scales on the remaining parts of the head and body, were arranged dorsolaterally along the body, enclosing 19 canal neuromasts. Superficial neuromasts on the body were vertically aligned along 3 distinct body sections (comprising 19 dorsal, 26 lateral, and 20 ventrally positioned vertical lines), the lateral section being separated from the adjacent sections by single dorsolateral and ventrolateral horizontal lines of superficial neuromasts, respectively. All the canal neuromasts in the lateral line scales were included in the dorsal vertical lines. Accessory lateral rami, innervating most of the neuromasts on the body, were derived from the lateral ramus in a one-to-one relationship with the vertebrae.  相似文献   

2.
The lateral line system of teleost fish is composed of mechanosensory receptors (neuromasts), comprising superficial receptors and others embedded in canals running under the skin. Canal diameter and size of the canal neuromasts are correlated with increasing body size, thus providing a very simple system to investigate mechanisms underlying the coordination between organ growth and body size. Here, we examine the development of the trunk lateral line canal system in zebrafish. We demonstrated that trunk canals originate from scales through a bone remodeling process, which we suggest is essential for the normal growth of canals and canal neuromasts. Moreover, we found that lateral line cells are required for the formation of canals, suggesting the existence of mutual interactions between the sensory system and surrounding connective tissues.  相似文献   

3.
Components of the lateral line system and their innervation were examined in Glossogobius olivaceus (Gobiidae), with almost all of the trunk scales bearing a row of superficial neuromasts, the latter comprising some 2,900 of the total (ca. 4,800) neuromasts on the body. The relationship between orientation and innervation of the superficial neuromasts on the head showed the buccal and mandibular rami to be clearly separated. On the trunk, the lateral ramus detached a number of branches, typically comprising dorsal, lateral and ventral ramules, to innervate neuromasts. Extensively distributed neuromasts were considered as an adaptation to a nocturnal habit, compensating for reduced vision.  相似文献   

4.
A study of the ontogeny of the lateral line system in leptocephali of the Japanese eel Anguilla japonica reveals the existence of three morphologically different types of lateral line organs. Type I is a novel sensory organ with hair cells bearing a single kinocilium, lacking stereocilia, distributed mainly on the head of larvae, and morphologically different from typical superficial neuromasts of the lateral line system. Its developmental sequence suggests that it may be a presumptive canal neuromast. Type II is an ordinary superficial neuromast, common in other teleost larvae, which includes presumptive canal neuromasts that first appear on the trunk and accessory superficial neuromasts that later appear on the head and trunk. Type III is a very unusual neuromast located just behind the orbit, close to the otic vesicle, with radially oriented hair cells, suggesting that these serve as multiple axes of sensitivity for mechanical stimuli. The behavior of larval eels suggests that the radially oriented neuromasts may act as the sole mechanosensory organ until the ordinary superficial neuromasts develop. The finding that larval eels possess a well-developed mechanosensory system suggests the possibility that they are also capable of perceiving weak environmental mechanical stimuli, like other teleost larvae.  相似文献   

5.
版纳鱼螈侧线系统的结构   总被引:5,自引:0,他引:5  
李桂芬  许崇任 《动物学报》2007,53(2):346-353
版纳鱼螈(Ichthyophis bannanica)是我国无足目的仅有代表,应用光镜和扫描电镜对版纳鱼螈的侧线系统进行形态学和组织学观察的研究表明:版纳鱼螈幼体表皮中的侧线器官有接受机械刺激的神经丘和电接受壶腹器官两种,神经丘包括表面神经丘和陷神经丘。侧线分布主要包括:头部的鼻侧线、眶上线、眶下线、眶后线、口侧线、下颌线、咽侧线、鳃孔上线和身体上的背侧线。侧线器官的分布密度、大小和凹陷深度明显与周围表皮的厚度和不同部位有关。幼体的侧线器官退化与鳃孔的退化同步,亚成体以后不保留侧线系统。版纳鱼螈的侧线分布和器官结构与其它无足类的大致相似,仅在眶上线和眶下线的器官分布上存在微小的差别  相似文献   

6.
The lateral line of fish is composed of neuromasts used to detect water motions. Neuromasts occur as superficial neuromasts on the skin and as canal neuromasts in subepidermal canals. Fibres of the lateral line nerves innervate both. There have been extensive studies on the responses of lateral line nerve fibres to dipole stimuli applied in still water. However, despite the fact that many fish live in rivers and/or swim constantly, responses of lateral line nerve fibres to dipole stimuli presented in running water have never been recorded. We investigated how the peripheral lateral line of still water fish ( Carassius auratus) and riverine fish ( Oncorhynchus mykiss) responds to minute sinusoidal water motions while exposed to unidirectional water flow. Both goldfish and trout have two types of posterior lateral line nerve fibres: Type I fibres, which most likely innervate superficial neuromasts, were stimulated by running water (10 cm s(-1)). The responses of type I fibres to water motions generated by a vibrating sphere were masked if the fish was exposed to running water. Type II fibres, which most likely innervate canal neuromasts, were not stimulated by running water. Consequently, responses of type II fibres to a vibrating sphere were not masked under flow conditions.  相似文献   

7.
Pattern formation in the lateral line of zebrafish.   总被引:1,自引:0,他引:1  
The lateral line of fish and amphibians is a sensory system that comprises a number of individual sense organs, the neuromasts, arranged in a defined pattern on the surface of the body. A conspicuous part of the system is a line of organs that extends along each flank (and which gave the system its name). At the end of zebrafish embryogenesis, this line comprises 7-8 neuromasts regularly spaced between the ear and the tip of the tail. The neuromasts are deposited by a migrating primordium that originates from the otic region. Here, we follow the development of this pattern and show that heterogeneities within the migrating primordium prefigure neuromast formation.  相似文献   

8.
Zebrafish larvae show a robust behavior called rheotaxis, whereby they use their lateral line system to orient upstream in the presence of a steady current. At 5 days post fertilization, rheotactic larvae can detect and initiate a swimming burst away from a continuous point-source of suction. Burst distance and velocity increase when fish initiate bursts closer to the suction source where flow velocity is higher. We suggest that either the magnitude of the burst reflects the initial flow stimulus, or fish may continually sense flow during the burst to determine where to stop. By removing specific neuromasts of the posterior lateral line along the body, we show how the location and number of flow sensors play a role in detecting a continuous suction source. We show that the burst response critically depends on the presence of neuromasts on the tail. Flow information relayed by neuromasts appears to be involved in the selection of appropriate behavioral responses. We hypothesize that caudally located neuromasts may be preferentially connected to fast swimming spinal motor networks while rostrally located neuromasts are connected to slow swimming motor networks at an early age.  相似文献   

9.
Summary The lateral line systems of larval caecilians of the genusIchthyophis possess two types of elements, free neuromasts and ampullary organs. Free mechanoreceptive neuromasts are typical of those found in other vertebrates, and are arranged in series roughly homologous to neuromast groups in many other fishes and amphibians. In contrast to other amphibians,Ichthyophis larvae possess only one paired, dorsal body series of neuromasts. Regional specialization of neuromasts is evident inIchthyophis. Premaxillary and anterior head neuromasts are the largest in size and total cell number. Overall, size and total cell numbers are correlated with depth of epidermis. Neuromasts on the anterior sides of the head occur in slight grooves and have apical tips situated farther below the level of the epidermis and with greater apical indentation. These features probably provide increased protection against abrasion. Apparently abnormal neuromasts are frequently found among the neuromast series. Such neuromasts contain fewer cells that lack normal apical extension, producing a sunken effect similar to that of the ampullary organ elements. The ampullary organs ofIchthyophis are morphologically similar to those found in various freshwater fishes and known to function as electroreceptors. These organs are not observed in the lateral line systems of members of other amphibian orders (Urodela and Anura), and we suggest that they function as electroreceptors. The sunken neuromasts of theIchthyophis lateral line system may parallel the possible evolutionary development of pit organs from normal neuromasts.  相似文献   

10.
The lateral line is a sensory system present in fish and amphibians. It is composed of discrete sense organs, the neuromasts, arranged on the head and body in species-specific patterns. The neuromasts are deposited by migrating primordia that originate from pre- and postotic placodes and follow defined pathways on the head and body. Here we examine the formation of the posterior lateral line (PLL), which extends rostrocaudally on the trunk and tail. In amphibians, the PLL neuromasts are deposited as a single wave from the head to the tip of the tail. In the zebrafish, however, the first wave of neuromast deposition forms but a rudimentary PLL, and several additional waves are needed to form the adult pattern. We show that the amphibian mode is also present in the sturgeon and therefore probably represents the primitive mode, whereas the zebrafish mode is highly conserved in several teleost species. A third mode is found in a subgroup of teleosts, the protacanthopterygians, and may represent a synapomorphy of this group. Altogether, the mode of formation of the embryonic PLL appears to have undergone remarkably few changes during the long history of anamniote evolution, even though large differences can be observed in the lateral line morphology of adult fishes.  相似文献   

11.
The lateral line system and its innervation were examined in the most primitive gobioid taxon, Rhyacichthys aspro (Rhyacichthyidae). The infraorbital canal was present, whereas superficial neuromast rows a and c, typically present on the cheek of gobioids, were absent. Because the infraorbital canal (absent in other gobioids) and the two rows were commonly innervated by the buccal ramus, the latter were categorized as replaced rows from canal neuromasts. On an innervation basis, rows b and d on the cheek were considered to comprise superficial neuromasts only in all gobioids. The trunk lateral line system comprised canal and superficial neuromasts, the former being included in the lateral line scales (each bearing 1–7 neuromasts arranged longitudinally along the direction of a groove). Absence of bony roofs in the lateral line system was proposed as a synapomorphy of Gobioidei, and a progressive neotenic shift in the lateral line system of the suborder discussed.  相似文献   

12.
Dissection of peripheral nerves in the ocean sunfish Mola mola showed the lateral line system to comprise 6 cephalic and 1 trunk lateral lines, all neuromasts being superficial. The trunk line was restricted to the anterior half of the body, the number of neuromasts (27) being fewer than those previously recorded in other tetraodontiforms. The lateral ramus of the posterior lateral line nerve did not form a “serial collector nerve” along the body. The number of foramina in the neurocranium, serving as passages for the cranial nerves, was fewer than in primitive tetraodontiforms, the reduction being related to modifications in the posterior cranium. Some muscle homologies were reinterpreted based on nerve innervation patterns. The cutaneous branch innervation pattern in the claval fin rays was clearly identical with that in the dorsal and anal fin rays, but differed significantly from that in the caudal fin rays, providing strong support for the hypothesis that the clavus comprises highly modified components of the dorsal and anal fins.  相似文献   

13.
The morphology and development of the multiple lateral line canals (canals 1–5 in dorsal to ventral sequence) on the trunk of two representative hexagrammids, Hexagrammos decagrammus and H. stelleri, were studied using histological and cleared and stained material. The morphology of the lateral line scales of which the lateral line canals are composed and the distribution of canal neuromasts within them were described quantitatively. We hypothesized that 1) one neuromast is contained in each lateral line scale and all five canals contain neuromasts, 2) all five canals develop similarly, and 3) the multiple trunk canals are an adaptation for the alteration of lateral line function. Lateral line scale morphology was found to be similar among the five canals in Hexagrammos decagrammus and H. stelleri. However, canal 3 is significantly wider than the other four canals. It is the only one of the five canals connected to the canals on the head, and more significantly, it is the only one of the five canals that contains neuromasts. The lateral line scales that comprise all five lateral line canals show the same pattern of development whether or not they contain neuromasts. The five canals develop asynchronously, and each of the canals develops either rostro-caudally or caudo-rostrally. Canal 3 is the homologue of a single trunk canal in other teleosts; canals 1, 2, 4, and 5 are apomorphic features of the two species of Hexagrammos. Canals 1, 2, 4, and 5 cannot be functional components of the lateral line system because they do not contain neuromasts and thus cannot be adaptations for the alteration of lateral line function. The occurrence of lateral line canals lacking neuromasts demands a direct assessment of neuromast distributions in the lateral line canals among fishes. Finally, our data suggest that the putative role of neuromasts in the morphogenesis of lateral line canals and the nature of neuromast-bone relationships need to be critically reevaluated. J. Morphol. 233:195–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
The biological function of anatomical specializations in the mechanosensory lateral line of elasmobranch fishes is essentially unknown. The gross and histological features of the lateral line in the Atlantic stingray, Dasyatis sabina, were examined with special reference to its role in the localization and capture of natural invertebrate prey. Superficial neuromasts are arranged in bilateral rows near the dorsal midline from the spiracle to the posterior body disk and in a lateral position along the entire length of the tail. All dorsal lateral line canals are pored, contain sensory neuromasts, and have accessory lateral tubules that most likely function to increase their receptive field. The pored ventral canal system consists of the lateral hyomandibular canal along the disk margin and the short, separate mandibular canal on the lower jaw. The extensive nonpored and relatively compliant ventral infraorbital, supraorbital, and medial hyomandibular canals form a continuous complex on the snout, around the mouth, and along the abdomen. Vesicles of Savi are small mechanosensory subdermal pouches that occur in bilateral rows only along the ventral midline of the rostrum. Superficial neuromasts are best positioned to detect water movements along the transverse body axis such as those produced by tidal currents, conspecifics, or predators. The pored dorsal canal system is positioned to detect water movements created by conspecifics, predators, or possibly distortions in the flow field during swimming. Based upon the stingray lateral line morphology and feeding behavior, we propose the Mechanotactile Hypothesis, which states that the ventral nonpored canals and vesicles of Savi function as specialized tactile mechanoreceptors that facilitate the detection and capture of small benthic invertebrate prey. J. Morphol. 238:1–22, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
暗纹东方鲀侧线系统早期形态和生长发育   总被引:1,自引:0,他引:1  
通过光镜和扫描电镜对暗纹东方鲀(Takifugu obscurus)的侧线系统进行形态学及组织学的研究。研究结果首次揭示了暗纹东方鲀侧线系统除了主侧线外还包括辅助侧线和辅助神经丘。主侧线分布主要包括眶上线、眶下线、耳后侧线、下颌线、前鳃盖线、上颞线、背侧线、腹侧线。辅助侧线和辅助神经丘分布主要包括口部辅助侧线、眶下辅助侧线、下颌前辅助侧线、下颌后辅助侧线、眶上后辅助侧线、上颞腹辅助神经丘、上颞背辅助神经丘、前鳃盖后辅助神经丘、背部辅助神经丘、尾部辅助神经丘。暗纹东方鲀侧线器官为接受机械刺激的神经丘,数目上千,神经丘分布在体表的凹槽里,且位于高低不同突起顶端。神经丘由套细胞、支持细胞和感觉毛细胞组成。感觉毛细胞呈圆形排列,并且每个细胞的游离面均有一根动纤毛和几十根静纤毛。据本研究对暗纹东方鲀侧线分布特征和神经丘的生长特征等的观察结果,认为尽管暗纹东方鲀侧线系统没有如其他真骨鱼类的管道系统,但是依然具有两套不同生理机能的机械感受系统,符合"七管模式"的主侧线神经丘与管道神经丘同源,而辅助侧线和辅助神经丘才是真正的表面神经丘。  相似文献   

16.
We studied the discharges of neurons in the ascending lateral line pathway in response to the complex water motions generated by a moving object. The wave stimulus generated by the object was monitored with a hot-wire anemometer and with a custom-built particle imaging system. Responses of central lateral line neurons differ from those of primary afferent fibers in aspects like temporal discharge patterns and directional sensitivity. The data are consistent with the hypothesis that central lateral line neurons integrate input from many afferents innervating neuromasts distributed across large portions of the body surface.  相似文献   

17.
The relatively simple structural organization of the cranial lateral line system of bony fishes provides a valuable context in which to explore the ways in which variation in post‐embryonic development results in functionally distinct phenotypes, thus providing a link between development, evolution, and behavior. Vital fluorescent staining, histology, and scanning electron microscopy were used to describe the distribution, morphology, and ontogeny of the canal and superficial neuromasts on the head of two Lake Malawi cichlids with contrasting lateral line canal phenotypes (Tramitichromis sp. [narrow‐simple, well‐ossified canals with small pores] and Aulonocara stuartgranti [widened, more weakly ossified canals with large pores]). This work showed that: 1) the patterning (number, distribution) of canal neuromasts, and the process of canal morphogenesis typical of bony fishes was the same in the two species, 2) two sub‐populations of neuromasts (presumptive canal neuromasts and superficial neuromasts) are already distinguishable in small larvae and demonstrate distinctive ontogenetic trajectories in both species, 3) canal neuromasts differ with respect to ontogenetic trends in size and proportions between canals and between species, 4) the size, shape, configuration, physiological orientation, and overall rate of proliferation varies among the nine series of superficial neuromasts, which are found in both species, and 5) in Aulonocara, in particular, a consistent number of canal neuromasts accompanied by variability in the formation of canal pores during canal morphogenesis demonstrates independence of early and late phases of lateral line development. This work provides a new perspective on the contributions of post‐embryonic phases of lateral line development and to the generation of distinct phenotypes in the lateral line system of bony fishes. J. Morphol. 277:1273–1291, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Tadpoles (Xenopus laevis) have a lateral line system whose anatomical structure has been described, but whose functional significance has not been closely examined. These experiments tested the hypothesis that the lateral line system is involved in rheotaxis. Tadpoles in developmental stages 47–56 oriented toward the source of a water current. Orientation was less precise after treatment with cobalt chloride or streptomycin, but was similar to that of untreated animals after exposure to gentamicin. In no current conditions, tadpoles exhibited a characteristic head-down posture by which they held themselves in the water column at an angle around 45°. This body posture became significantly less tilted in the presence of water current. Treatment with cobalt chloride or streptomycin increased the angle of tilt close to that seen in no current conditions, while gentamicin treatment tended to decrease tilt angle. The data are consistent with anatomical and physiological findings that tadpole neuromasts are similar to superficial, but not canal, neuromasts in fishes, and they suggest that the lateral line system is involved in both directional current detection and current-related postural adjustments in Xenopus.  相似文献   

19.

Background  

The lateral line system in zebrafish is composed of a series of organs called neuromasts, which are distributed over the body surface. Neuromasts contain clusters of hair cells, surrounded by accessory cells.  相似文献   

20.
With the mechanosensory lateral line fish perceive water motions relative to their body surface and local pressure gradients. The lateral line plays an important role in many fish behaviors including the detection and localization of dipole sources and the tracking of prey fish. The sensory units of the lateral line are the neuromasts which are distributed across the surface of the animal. Water motions are received and transduced into neuronal signals by the neuromasts. These signals are conveyed by afferent nerve fibers to the fish brain and processed by lateral line neurons in parts of the brainstem, cerebellum, midbrain, and forebrain. In the cerebellum, midbrain, and forebrain, lateral line information is integrated with sensory information from other modalities. The present review introduces the peripheral morphology of the lateral line, and describes our understanding of lateral line physiology and behavior. It focuses on recent studies that have investigated: how fish behave in unsteady flow; what kind of sensory information is provided by flow; and how fish use and process this information. Finally, it reports new theoretical and biomimetic approaches to understand lateral line function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号