首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phillips RL  Weber DF  Kleese RA  Wang SS 《Genetics》1974,77(2):285-297
Ribosomal gene compensation and magnification that might be detected on a whole-plant basis was not found in maize. Plants monosomic for chromosome 6 (the NOR chromosome) were compared with monosomic-8 and monosomic-10 plants, disomic sibs, and parental lines. Assuming no rDNA compensation, monosomic-6 plants showed approximately the decrease expected in rRNA cistron number. Monosomic-8 had a normal ribosomal gene number, while monosomic-10 showed a decrease; but further documentation is needed. Besides demonstrating the absence of gene compensation, the results document our previous conclusion that maize chromosome 6 carries DNA complementary to ribosomal RNA. Further documentation was provided from studies with trisomic chromosome 6 plants showing proportional increases in ribosomal gene number. Progeny of the monosomic plants crossed as males to a standard singlecross hybrid possessed expected ribosomal gene numbers suggesting the lack of ribosomal gene magnification.—The ragged (rgd) mutant of maize, suspected of being deficient in rRNA cistrons, had a normal number.  相似文献   

2.
G Janbon  F Sherman  E Rustchenko 《Genetics》1999,153(2):653-664
This is the first report that adaptive mutagenesis can arise by chromosomal nondisjunction, a phenomenon previously associated exclusively with DNA alterations. We previously uncovered a novel regulatory mechanism in Candida albicans in which the assimilation of an alternative sugar, l-sorbose, was determined by copy number of chromosome 5, such that monosomic strains utilized l-sorbose, whereas disomic strains did not. We present evidence that this formation of monosomy of chromosome 5, which is apparently a result of nondisjunction, appeared with increased frequencies after a selective condition was applied, i.e., by adaptive mutagenesis. The rate of formation of l-sorbose-utilizing mutants per viable cell per day ranged from 10(-6) at the initial time of detection to 10(-2) after 4 days of incubation on the selective plate.  相似文献   

3.
A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.  相似文献   

4.
5.
Imbalances of gene expression in aneuploids, which contain an abnormal number of chromosomes, cause a variety of growth and developmental defects. Aneuploid cells of the fission yeast Schizosaccharomyces pombe are inviable, or very unstable, during mitotic growth. However, S. pombe haploid cells bearing minichromosomes derived from the chromosome 3 can grow stably as a partial aneuploid. To address biological consequences of aneuploidy, we examined the gene expression profiles of partial aneuploid strains using DNA microarray analysis. The expression of genes in disomic or trisomic cells was found to increase approximately in proportion to their copy number. We also found that some genes in the monosomic regions of partial aneuploid strains increased their expression level despite there being no change in copy number. This change in gene expression can be attributed to increased expression of the genes in the disomic or trisomic regions. However, even in an aneuploid strain that bears a minichromosome containing no protein coding genes, genes located within about 50 kb of the telomere showed similar increases in expression, indicating that these changes are not a secondary effect of the increased gene dosage. Examining the distribution of the heterochromoatin protein Swi6 using DNA microarray analysis, we found that binding of Swi6 within ~50 kb from the telomere occurred less in partial aneuploid strains compared to euploid strains. These results suggest that additional chromosomes in aneuploids could lead to imbalances in gene expression through changes in distribution of heterochromatin as well as in gene dosage.  相似文献   

6.
应用基因组原位杂交及RFLP标记鉴定小麦中的大麦染色体   总被引:10,自引:2,他引:8  
用生物素(Biotin-6-dUTP)标记的大麦Betzes基因组DNA作探针,以普通小麦中国春总DNA作封阻进行基因组原位杂交(Genomeinsituhybridization,简称GISH),从13株小麦-大麦杂交后代中鉴定出2个含有3条大麦Betzes2H染色体的材料(2n=43);2个2H单体异代换系(2n=42);7个2H二体异代换系(2n=42)。用已定位在小麦第2部分同源群短臂上的探针psr131进行RFLP分析,结果表明大麦Betzes、代换系A5有1条区别于小麦中国春的特异带,A  相似文献   

7.
8.
A 530 kb long Schizosaccharomyces pombe linear minichromosome, Ch16, containing a centric region of chromosome III, has previously been made. In the present study, we constructed a number of deletions in the right and/or left arms of Ch16, and compared their structure and behaviour with Ch16. The functional centromere, cen3, is allocated within a 120 kb long region which is covered by the shortest derivative, Ch10, and is comprised mostly of centromeric repeating sequences. The shortest minichromosome is stable in mitosis and the copy number control is apparently precise. In monosomic meiosis it segregates normally. In disomic meioses, however, the frequency of non-disjunction is very high, suggesting that it may not form a pair. The mitotic loss rate of one of the left-arm deletions, ChR32, which lacks a part of the centromeric repeating sequence, is the highest of all the deletions. This deletion also exhibits the highest precocious sister chromatid separation in meiosis I, suggesting that sister chromatid association might become weakened in ChR32. Our results indicate that the proper meiotic segregation of S.pombe minichromosomes is dependent upon the formation of a bivalent. S.pombe may not have the 'distributive segregation' found with Saccharomyces cerevisiae minichromosomes.  相似文献   

9.
Sixteen near-isogenic lines (NILs) carrying a marker gene were produced by the recurrent backcrossing method in the genetic background of common wheat (Triticum aestivum) cv. Chinese Spring (CS). Three genes from alien species showed segregation distortion. In NILs carrying a marker gene of rye (Secale cereale) or Aegilops caudata, the alien chromosome segments were detected by fluorescence in situ hybridization (FISH). The NILs were grown with replications and the effect of marker genes on plant morphology in the genetic background of CS was investigated. These NILs were further crossed with the corresponding monosomics of CS and 13 monosomic lines whose monosome carries a respective marker gene were established and named "marked monosomics." Many of the marked monosomics were distinguishable from the disomic NILs because of the different dosage effect of the genes. The NILs are utilized for studies on gene isolation or gene regulation. Marked monosomics are useful not only for monosomic analysis but also for production of homologous chromosome substitution lines because chromosome observation is not required.  相似文献   

10.
Summary A severely retarded and dysmorphic girl, carrying an unbalanced X/7 translocation with breakpoints at Xq28 and 7p14, was analyzed by cytogenetic, biochemical and molecular techniques. The X/7 translocated chromosome was found to replicate consistently late in the 105 metaphases analyzed. In 83 of these cells, late replication was limited to the X portion of the abnormal chromosome, whereas in 22 cells incomplete spreading into the autosomal fragment was observed. Southern blot and in situ hybridization experiments with probe G80 (locus D7S373) (previously localized to 7p13–15) and G98 (localized to 7p14–15) assigns the former to 7p15 and the latter to 7p14, thus suggesting the order 7ter-G80-G98-cen. The activity of the enzyme phosphoserine phosphatase localized to 7pter p14 was increased. Southern blotting experiments with 19 probes spanning the entire X chromosome demonstrated that the translocated chromosome had lost a portion of Xq28 (locus DXS51) but still retained part of Xq27 (F9 locus). The results confirm that the proband is trisomic for the region 7p15-pter and monosomic for the region Xq28-qter. Comparing her phenotype with those of other cases of partial trisomy or monosomy 7p, we confirm that band 7p21 is probably involved in skull development.  相似文献   

11.
Genomic single-copy DNA fragments were used to characterize an undetected chromosome translocation in an individual whose metaphase chromosome analysis revealed apparent monosomy 21. Eight RFLPs detected by six probes were used to identify homologous sequences from chromosome 21 in DNA digests from the proband and her parents. These family studies showed that the proband was disomic for the distal region of 21q. Reverse banding and in situ hybridization of chromosome 21-specific probes to metaphase chromosomes from the proband revealed a de novo translocation with breakpoints at 5p13 or 14 and 21q11 or 21. In situ hybridization permitted orientation of the translocated portion of chromosome 21 on the derivative chromosome 5 and, in conjunction with molecular analysis and previous mapping studies, refined the physical map for the long arm of chromosome 21.  相似文献   

12.
普通小麦×大麦杂种后代细胞遗传学研究   总被引:5,自引:0,他引:5  
普通小麦×大麦杂种与普通小麦回交,产生了具有普通小麦细胞质带有部分大麦细胞核的普通小麦-大麦属间杂种后代,对其连续多年套袋自交,测交、细胞学鉴定和定向选择,从自交后代群体中筛选出一部分异附加系、异代换系和易位系街人有大麦某些特性的小析类型,并系统地对本和二体附加系自交后代染色体的分离行为作了遗传分析。结果表明:2n=43的单体附加标株自交分离出单体附加的频率为25.6%,二体附加的频率为1.2%;  相似文献   

13.
A recessive mutation in the mouse, situs inversus viscerum (iv), results in randomization of organ position along the left-right body axis: approximately 50% of the progeny of homozygous matings exhibit situs solitus and 50% exhibit situs inversus. Recent studies have established genetic linkage between iv and the immunoglobulin heavy chain gene complex (Igh-C), located on distal mouse chromosome 12. In the present study, we have refined the genetic map location of iv relative to the breakpoint of a reciprocal translocation, T(5;12)31H, involving the telomeric region of chromosome 12 distal to Igh-C and the proximal region of chromosome 5. The translocation results in a large 12(5) derivative chromosome and a small 5(12) derivative chromosome. Because mice with either monosomy or tertiary trisomy for the 5(12) chromosomal region are viable, duplication/deficiency mapping is possible. Deficiency mapping was performed by mating iv/iv homozygotes and T31H heterozygotes. Two animals monosomic for distal mouse chromosome 12 were produced. One of the animals with cytogenetically confirmed monosomy for distal chromosome 12 exhibited situs inversus, indicating that the iv mutation is located at or distal to the T31H breakpoint. For duplication analysis, matings were initially carried out between iv/iv homozygotes and unbalanced T31H animals trisomic for distal chromosome 12. Cytogenetically verified tertiary trisomic progeny were identified and backcrossed with iv/iv homozygotes. The resulting trisomic progeny, 50% of which are expected to carry the iv mutation on both cytogenetically normal copies of chromosome 12, were scored for phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.

Introduction

Although cetuximab and panitumumab show an increased efficacy for patients with KRAS-NRAS-BRAF and PI3KCA wild-type metastatic colorectal cancer, primary resistance occurs in a relevant subset of molecularly enriched populations.

Patients and Methods

We evaluated the outcome of 68 patients with advanced colorectal cancer and RAS, BRAF and PI3KCA status according to ALK gene status (disomic vs. gain of ALK gene copy number – defined as mean of 3 to 5 fusion signals in ≥10% of cells). All consecutive patients received cetuximab and irinotecan or panitumumab alone for chemorefractory disease.

Results

No ALK translocations or amplifications were detected. ALK gene copy number gain was found in 25 (37%) tumors. Response rate was significantly higher in patients with disomic ALK as compared to those with gain of gene copy number (70% vs. 32%; p = 0.0048). Similarly, progression-free survival was significantly different when comparing the two groups (6.7 vs. 5.3 months; p = 0.045). A trend was observed also for overall survival (18.5 vs. 15.6 months; p = 0.885).

Conclusion

Gain of ALK gene copy number might represent a negative prognostic factor in mCRC and may have a role in resistance to anti-EGFR therapy.  相似文献   

16.
A method was developed for isolating large numbers of mutations on chromosome I of the yeast Saccharomyces cerevisiae. A strain monosomic for chromosome I (i.e., haploid for chromosome I and diploid for all other chromosomes) was mutagenized with either ethyl methanesulfonate or N-methyl-N'-nitro-N -nitrosoguanidine and screened for temperature-sensitive (Ts- ) mutants capable of growth on rich, glucose-containing medium at 25° but not at 37°. Recessive mutations induced on chromosome I are expressed, whereas those on the diploid chromosomes are usually not expressed because of the presence of wild-type alleles on the homologous chromosomes. Dominant ts mutations on all chromosomes should also be expressed, but these appeared rarely. — Of the 41 ts mutations analyzed, 32 mapped on chromosome I. These 32 mutations fell into only three complementation groups, which proved to be the previously described genes CDC15, CDC24 and PYK1 (or CDC19). We recovered 16 or 17 independent mutations in CDC15, 12 independent mutations in CDC24 and three independent mutations in PYK1. A fourth gene on chromosome I, MAK16, is known to be capable of giving rise to a ts-lethal allele, but we recovered no mutations in this gene. The remaining nine mutations isolated using the monosomic strain appeared not to map on chromosome I and were apparently expressed in the original mutants because they had become homozygous or hemizygous by mitotic recombination or chromosome loss. — The available information about the size of chromosome I suggests that it should contain approximately 60–100 genes. However, our isolation in the monosomic strain of multiple, independent alleles of just three genes suggests that only a small proportion of the genes on chromosome I is easily mutable to give a Ts--lethal phenotype. — During these studies, we located CDC24 on chromosome I and determined that it is centromere distal to PYK1 on the left arm of the chromosome.  相似文献   

17.
Fu SL  Tang ZX  Ren ZL 《遗传》2011,33(11):1258-1262
以重复序列pAS1和pSc119.2为探针,对八倍体小黑麦×普通小麦的F5代植株进行了FISH分析,同时对这些材料进行了田间抗病性鉴定。从中鉴定出了1R、2R、3R、4R、5R、6R、7R单体附加系和1R、2R二体附加系,1R和4R附加系出现频率相对较高。5R和6R单体附加系对白粉病免疫,推测5R染色体上带有新的白粉病抗性基因。此外,还检测到不少植株染色体组发生了变异,且小麦4B染色体优先缺失。  相似文献   

18.
Stripe rust (Puccinia striiformis tritici (Pst)) is one of the most destructive diseases of wheat in the world. Exploiting and utilizing stripe rust resistance genes of wild species has become an essential strategy for resistance breeding. Psathyrostachyshuashanica Keng ex Kuo is a wild species in Triticeae that has been used for wheat improvement because of its high resistance or immunity to stripe rust. In this study, 9 wheat-P. huashanica addition lines were characterized by Giemsa C-banding, genomic in situ hybridization (GISH), and disease resistance evaluation. Giemsa C-banding and GISH demonstrated that lines 163-5, 165-1, 183-5, 240-3, and 240-4 are P. huashanica 3Ns chromosome monosomic addition lines; lines 183-1 and 183-20 are P. huashanica 3Ns chromosome disomic addition lines; line 165-20 is a P. huashanica 3Ns and 4Ns chromosomes double disomic addition line, and line 219-1 is a P. huashanica 1Ns and 3Ns/5A chromosomes double disomic addition-substitution line. All these addition lines with P. huashanica 3Ns chromosome(s) expressed high resistance or immunity to stripe rust. By comparing the series of wheat-P. huashanica chromosome addition lines, we concluded that the P. huashanica 3Ns chromosome carries the gene(s) for resistance or immunity to stripe rust. These addition lines can be used as a donor source of novel stripe rust resistance to wheat breeding programs.  相似文献   

19.
Breeding programs aiming at transferring desirable genes from one species to another through interspecific hybridization and backcrossings often produce monosomic and disomic additions as intermediate crossing products. Such aneuploids contain alien chromosomes added to the complements of the recipient parent and can be used for further introgression programs, but lack of homoeologous recombination and inevitable segregation of the alien chromosome at meiosis make them often less ideal for producing stable introgression lines. Monosomic and disomic additions can have specific morphological characteristics, but more often they need additional confirmation of molecular marker analyses and assessment by fluorescence in situ hybridization with genomic and chromosome-specific DNA as probes. Their specific genetic and cytogenetic properties make them powerful tools for fundamental research elucidating regulation of homoeologous recombination, distribution of chromosome-specific markers and repetitive DNA sequences, and regulation of heterologous gene expression. In this overview we present the major characteristics of such interspecific aneuploids highlighting their advantages and drawbacks for breeding and fundamental research.  相似文献   

20.
Summary This study aimed at generating chromosome addition lines and disclosing genome specific markers in Brassica. These stocks will be used to study genome evolution in Brassica oleracea L., B. campestris L. and the derived amphidiploid species B. napus L. B. campestris-oleracea monosomic and disomic chromosome addition plants were generated by crossing and backcrossing the natural amphidiploid B. napus to the diploid parental species B. campestris. The pollen viability of the derived sesquidiploid and hyperploid ranged from 63% to 88%, while the monosomic and disomic addition plants had an average pollen fertility of 94% and 91%, respectively. The addition lines were genetically characterized by genome specific markers. The isozymes for 6PGD, LAP, PGI and PGM, and rDNA Eco RI restriction fragments were found to possess the desired genome specificity. Duplicated loci for several of these markers were observed in B. campestris and B. oleracea, supporting the hypothesis that these diploid species are actually secondary polyploids. A total of eight monosomic and eight disomic addition plants were identified and characterized on the basis of these markers. Another 51 plants remained uncharacterized due to the lack of additional markers. rDNA genes were found to be distributed in more than one chromosome, differing in its restriction sites. Intergenomic recombination for some of the markers was detected at frequencies between 6% and 20%, revealing the feasibility of intergenomic gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号