首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transforming growth factor (TGFβ) prevents TH1 and TH2 differentiation and converts naïve CD4 cells into Foxp3-expressing T regulatory (Treg) cell1, 2. In sharp contrast, in the presence of pro-inflammatory cytokines, including IL-6, TGFβ not only inhibits Foxp3 expression but also promotes the differentiation of pro-inflammatory IL17-producing CD4 effector T (TH17) cells3-5. This reciprocal TGFβ-dependent differentiation imposes a critical dilemma between pro- and anti-inflammatory immunity and suggests that a sensitive regulatory mechanism must exist to control TGFβ-driven TH17 effector and Treg differentiation. A vitamin A metabolite, retinoic acid (RA), was recently identified as a key modulator of TGFβ-driven immune deviation capable of suppressing TH17 differentiation while promoting Foxp3+Treg generation 6-10.  相似文献   

4.
5.
6.
7.
In a search for novel inhibitors of RA-metabolising enzyme inhibitors as potential anti-cancer agents some 1,2-ethandiones, 2-hydroxyethanones and 1-ethylenedioxyethanones based on aryl-substituted 1,2-diphenylethane have been examined. Several of the compounds were weak inhibitors of the non-specific rat liver microsomal P450 enzymes and moderate inhibitors of the RA-induced enzymes in cultured human genital fibroblasts, where the RA-specific enzyme CYP26 is probably expressed. The 2-hydroxyethanone (13) with a 1-(4-dimethylaminophenyl) substituent was overall the most potent compound for rat liver microsomal enzyme (IC50=52.1?μM; ketoconazole, 2.8?μM) and the RA-induced enzyme (100?μM, 65.9% inhibition; ketoconazole, 20?μM, 75.0%). Modification of the dimethylamino group in (13) with more hydrophobic dialkylamino functions or separate modification of the 2-(2,4-dichlorophenyl) function did not improve potency.  相似文献   

8.
9.
10.
Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs’ program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (IPRG001), a genipin derivative, has both neuroprotective and neurite outgrowth activities in murine RGC-5 retinal precursor cells. These effects were both mediated by nitric oxide (NO)/S-nitrosylation signaling. Neuritogenic activity was mediated by S-nitrosylation of histone deacetylase-2 (HDAC2), which subsequently induced retinoic acid receptor β (RARβ) expression via chromatin remodeling in vitro. RARβ plays important roles of neural growth and differentiation in development. However, the role of RARβ expression during adult rat optic nerve regeneration is not clear. In the present study, we extended this hypothesis to examine optic nerve regeneration by IPRG001 in adult rat RGCs in vivo. We found a correlation between RARβ expression and neurite outgrowth with age in the developing rat retina. Moreover, we found that IPRG001 significantly induced RARβ expression in adult rat RGCs through the S-nitrosylation of HDAC2 processing mechanism. Concomitant with RARβ expression, adult rat RGCs displayed a regenerative capacity for optic axons in vivo by IPRG001 treatment. These neuritogenic effects of IPRG001 were specifically suppressed by siRNA for RARβ. Thus, the dual neuroprotective and neuritogenic actions of genipin via S-nitrosylation might offer a powerful therapeutic tool for the treatment of RGC degenerative disorders.  相似文献   

11.
Microarray analyses of gene expression are widely used, but reports of the same analyses by different groups give widely divergent results, and raise questions regarding reproducibility and reliability. We take as an example recent published reports on microarray experiments that were designed to identify retinoic acid responsive genes. These reports show substantial differences in their results. In this article, we review the methodology, results, and potential causes of differences in these applications of microarrays. Finally, we suggest practices to improve the reliability and reproducibility of microarray experiments.  相似文献   

12.
The identification of secreted factors that can selectively stimulate the generation of insulin producing β-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based β-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of β-cells during normal pancreatic development such putative factors may be identified. In the mouse, β-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of β-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when β-cells are generated. We also provide evidence that RA induces the generation of Ngn3+ endocrine progenitor cells and stimulates their further differentiation into β-cells by activating a program of cell differentiation that recapitulates the normal temporal program of β-cell differentiation.  相似文献   

13.
14.
Several studies suggest that Vitamin A may be involved in the pathogenesis of inflammatory bowel disease (IBD), but the mechanism is still unknown. Cytochrome P450 26 B1 (CYP26B1) is involved in the degradation of retinoic acid and the polymorphism rs2241057 has an elevated catabolic function of retinoic acid, why we hypothesized that the rs2241057 polymorphism may affect the risk of Crohn’s disease (CD) and Ulcerative Colitis (UC). DNA from 1378 IBD patients, divided into 871 patients with CD and 507 with UC, and 1205 healthy controls collected at Örebro University Hospital and Karolinska University Hospital were analyzed for the CYP26B1 rs2241057 polymorphism with TaqMan® SNP Genotyping Assay followed by allelic discrimination analysis. A higher frequency of patients homozygous for the major (T) allele was associated with CD but not UC compared to the frequency found in healthy controls. A significant association between the major allele and non-stricturing, non-penetrating phenotype was evident for CD. However, the observed associations reached borderline significance only, after correcting for multiple testing. We suggest that homozygous carriers of the major (T) allele, relative to homozygous carriers of the minor (C) allele, of the CYP26B1 polymorphism rs2241057 may have an increased risk for the development of CD, which possibly may be due to elevated levels of retinoic acid. Our data may support the role of Vitamin A in the pathophysiology of CD, but the exact mechanisms remain to be elucidated.  相似文献   

15.
Alcohol abuse affects several neurological pathways and causes significant alterations in the brain. Abstention from alcohol causes only a marginal decrease in oxidative stress and neuro inflammation. Our previous studies had shown that an active metabolite of vitamin A, all trans retinoic acid (ATRA), ameliorates alcohol induced toxicity. Hence in the present study we investigated whether ATRA regressed alcohol induced neuroinflammation. We focused on the role of silent mating type information regulation 2 homolog 1(SIRT1) and nuclear factor kappa-B (NFκB). Animals were administered with ethanol at a daily dose of (4 g/kg body weight) for 90 days. On the 91st day ethanol administration was stopped and animals were divided into ethanol abstention (A) and ATRA supplementation group (ATRA?+?A) (100 µg/kg body weight) and maintained for 30 days. Ethanol exposure increased markers of oxidative stress, inflammation and the activities of alcohol and acetaldehyde dehydrogenases and reduced the expression of SIRT1 in the whole brain.The ethanol induced altered expressions of NFκB and SIRT1 were modulated by supplementation of ATRA. Abstention also reduced toxicity, but to a lower extent in comparison with supplementation of ATRA. Our results seemed to suggest that ATRA regressed the mediators of ethanol induced neuroinflammation by reducing oxidative stress and by regulating the expression of NFκB and SIRT1. The ameliorative potential of ATRA was much higher than abstention.  相似文献   

16.
17.
18.
Sterol 12α-hydroxylase (CYP8B1) is required for cholic acid synthesis and plays a critical role in intestinal cholesterol absorption and pathogenesis of cholesterol gallstone, dyslipidemia, and diabetes. In this study we investigated the underlying mechanism of fasting induction and circadian rhythm of CYP8B1 by a cholesterol-activated nuclear receptor and core clock gene retinoic acid-related orphan receptor α (RORα). Fasting stimulated, whereas restricted-feeding reduced expression of CYP8B1 mRNA and protein. However, fasting and feeding had little effect on the diurnal rhythm of RORα mRNA expression, but fasting increased RORα protein levels by cAMP-activated protein kinase A-mediated phosphorylation and stabilization of the protein. Adenovirus-mediated gene transduction of RORα to mice strongly induced CYP8B1 expression, and increased liver cholesterol and 12α-hydroxylated bile acids in the bile acid pool and serum. A reporter assay identified a functional RORα response element in the CYP8B1 promoter. RORα recruited cAMP response element-binding protein-binding protein (CBP) to stimulate histone acetylation on the CYP8B1 gene promoter. In conclusion, RORα is a key regulator of diurnal rhythm and fasting induction of CYP8B1, which regulates bile acid composition and serum and liver cholesterol levels. Antagonizing RORα activity may be a therapeutic strategy for treating inflammatory diseases such as non-alcoholic fatty liver disease and type 2 diabetes.  相似文献   

19.
It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.  相似文献   

20.
Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号