首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early observation of light-dependent Ca-ATPase activity in chloroplast thylakoids [Avron, M. (1962) J. Biol. Chem. 237, 2011-2017] has been reinvestigated. It is demonstrated that in contrast to light-triggered Mg-ATP activity, Ca-ATPase activity is strictly dependent on delta microH+, the transthylakoid membrane electrochemical potential gradient, since (a) there is an absolute requirement for continuous illumination; (b) electron-transport mediators that catalyze proton uptake, like phenazinemethosulphate, methylviologen of ferricyanide, are essential and (c) uncouplers inhibit the activity. The Ca-ATPase activity is essentially unaffected by dithiols, but is inhibited by CF0-CF1 inhibitors including tentoxin, dicyclohexylcarbodiimide and antisera to CF1. Addition of Ca-ATP to thylakoids does not induce delta pH or delta psi (the electrical potential gradient) formation either in the light or following preillumination with dithiols, demonstrating that it is not coupled to proton translocation. It is also demonstrated that Ca-ATP or Ca-ADP does not induce a proton leak through CF0-CF1. It is concluded that the Ca-ATPase activity in chloroplast thylakoid reflects a partial reaction of ATP synthesis catalyzed by CF0-CF1, which is internally uncoupled from proton translocation but is dependent on energization by a transmembrane delta microH+.  相似文献   

2.
The mechanism of the light-dependent inactivation of glucose-6-phosphate dehydrogenase and the light-dependent activation of NADP+-malate dehydrogenase has been studied in partially purified extracts of pea (Pisum sativum) chloroplasts. Neither partially purified enzyme could be light modulated by washed thylakoids alone. However, a factor (mol. wt. 50 000) was present in the stroma which could, when added to purified enzyme and thylakoid membranes, reconstitute a light-dependent modulation of either glucose-6-phosphate dehydrogenase or NADP+-malate dehydrogenase. This factor, which we term protein-modulating factor, is distinct from ferredoxin-thioredoxin reductase and from thioredoxin, the factors involved in another scheme for light modulation. The scheme proposed here for light modulation involves electron transfer from Photosystem I to a membrane-bound light-effect mediator and then to the soluble protein modulating factor which modulates chloroplast enzyme activity, probably by reduction of a regulatory disulfide bond.  相似文献   

3.
To date, Arabidopsis purple acid phosphatase 2 (AtPAP2) is the only known plant protein that is dual-targeted to chloroplasts and mitochondria by a C-terminal targeting signal. Using in vitro organelle import and green fluorescence protein (GFP) localization assays, we showed that AtPAP2 is located on, but not imported across the outer membrane (OM) of chloroplasts and mitochondria and exposed its N-terminal enzymatic domain to the cytosol. It was also found that a short stretch of 30 amino acids (a.a.) at the C-terminal region (a.a. 615-644) that contains a stretch of 18 hydrophobic residues, a WYAK motif and 8 hydrophilic residues is sufficient for dual-targeting. Mutation of WYAK to WYAE had no effect on dual-targeting ability suggesting that the charge within this flanking region alone is not an important determinant for dual-targeting.     相似文献   

4.
In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex.  相似文献   

5.
6.
Sicher RC 《Plant physiology》1984,74(4):962-966
The light-dependent accumulation of radioactively labeled inorganic carbon in isolated spinach (Spinacia oleracea L.) chloroplasts was determined by silicone oil filtering centrifugation. Intact chloroplasts, dark-incubated 60 seconds at pH 7.6 and 23°C with 0.5 millimolar sodium bicarbonate, contained 0.5 to 1.0 millimolar internal inorganic carbon. The stromal pool of inorganic carbon increased 5- to 7-fold after 2 to 3 minutes of light. The saturated internal bicarbonate concentration of illuminated spinach chloroplasts was 10- to 20-fold greater than that of the external medium. This ratio decreased at lower temperatures and with increasing external bicarbonate. Over one-half the inorganic carbon found in intact spinach chloroplasts after 2 minutes of light was retained during a subsequent 3-minute dark incubation at 5°C. Calculations of light-induced stromal alkalization based on the uptake of radioactively labeled bicarbonate were 0.4 to 0.5 pH units less than measurements performed with [14C]dimethyloxazolidine-dione. About one-third of the binding sites on the enzyme ribulose 1,5-bisphosphate carboxylase were radiolabeled when the enzyme was activated in situ and 14CO2 bound to the activator site was trapped in the presence of carboxypentitol bisphosphates. Deleting orthophosphate from the incubation medium eliminated inorganic carbon accumulation in the stroma. Thus, bicarbonate ion distribution across the chloroplast envelope was not strictly pH dependent as predicted by the Henderson-Hasselbach formula. This finding is potentially explained by the presence of bound CO2 in the chloroplast.  相似文献   

7.
Enclosure of mitochondria by chloroplasts   总被引:5,自引:1,他引:4       下载免费PDF全文
In Panicum species of the Laxa group, some of which have characteristics intermediate to C3 and C4 photosynthesis species, some mitochondria in leaf bundle sheath cells are surrounded by chloroplasts when viewed in profile. Serial sectioning of leaves of one Laxa species, Panicum schenckii Hack, shows that these mitochondria are enclosed by chloroplasts. Complete enclosure rather than invagination also is indicated by absence of two concentric chloroplast membranes surrounding the mitochondrial profiles.  相似文献   

8.
9.
The photooxidants accumulated on the water-splitting side of photosystem II in chloroplasts are destabilized by certain membrane active chemicals. In the light and in the presence of oxygen, this destabilization results in a consumption of oxygen and in a lowering of the fluorescence emission from the chloroplasts. It is shown that a close correlation exists between the oxygen uptake and the fluorescence lowering, and that with some of the destabilizing agents photosystem I activity is not required for either process. When electron flow through photosystem I is blocked, the oxygen consumption appears to occur without formation of free oxygen-derived radicals. It is concluded that, in the light, a disturbed water-splitting enzyme may initiate oxygen-dependent photooxidations which the superoxide dismutase of chloroplasts cannot protect against. The fluorescence lowering is attributed to either direct quenching actions of oxygenated reaction products or to a cyclic electron flow between reduced electron carriers and such intermediates.  相似文献   

10.
The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.Key words: actin, Arabidopsis, blue light, chloroplast positioning, phototropin, nuclear positioning  相似文献   

11.
Transport of proteins into mitochondria and chloroplasts   总被引:38,自引:8,他引:30       下载免费PDF全文
  相似文献   

12.
Import of proteins into mitochondria and chloroplasts   总被引:2,自引:0,他引:2  
Although mitochondria and chloroplasts synthesize some of their own proteins, they must import most of them from the cytosol. Import is mediated by molecular chaperones in the cytosol, receptors and channels in the organelle membranes and ATP-driven 'import motors' inside the organelles. Many of these components are now known, allowing informed guesses on how they might work.  相似文献   

13.
During apoptosis induced by various stimuli, cytochrome c is released from mitochondria into the cytosol where it participates in caspase activation. This process has been proposed to be an irreversible consequence of mitochondrial permeability transition pore opening, which leads to mitochondrial swelling and rupture of the outer mitochondrial membrane. Here we present data demonstrating that NGF-deprived sympathetic neurons protected from apoptosis by caspase inhibitors possess mitochondria which, though depleted of cytochrome c and reduced in size, remained structurally intact as viewed by electron microscopy. After re-exposure of neurons to NGF, mitochondria recovered their normal size and their cytochrome c content, by a process requiring de novo protein synthesis. Altogether, these data suggest that depletion of cytochrome c from mitochondria is a controlled process compatible with function recovery. The ability of sympathetic neurons to recover fully from trophic factor deprivation provided irreversible caspase inhibitors have been present during the insult period, has therapeutical implications for a number of acute neuropathologies.  相似文献   

14.
Here we show, using the green fluorescent protein (GFP) fusion system, that an Arabidopsis thaliana zinc-metalloprotease (AtZn-MP) is targeted to both mitochondria and chloroplasts. A deletion mutant lacking the amino-terminal 28 residues, with translation initiation at the second methionine residue, was imported into chloroplasts only. However, a mutated form of the full-length targeting peptide, in which the second methionine residue is changed to leucine, was imported to both organelles. No GFP fluorescence was detected when a frame-shift mutation was introduced between the first and second ATG codons of the Zn-MP–GFP construct, suggesting no alternative translational initiation. Our results show that the dual targeting of the Zn-MP is due to an ambiguous targeting peptide. Furthermore, we show that the recombinant AtZn-MP degrades mitochondrial and chloroplastic targeting peptides, indicating its function as a signal peptide degrading protease in both mitochondria and chloroplasts.  相似文献   

15.
16.
Lipid composition of plant mitochondria and of chloroplasts   总被引:4,自引:0,他引:4  
The mitochondrial lipids from avocado fruit, cauliflower buds, and potato tubers, and the lipids of chloroplasts isolated from avocado fruit and from cauliflower leaves were identified and the concentrations were determined. The lipid composition was compared with that of beef heart mitochondria. Phospholipids constituted 50-56% of total lipids in plant mitochondria while this fraction made up 90% of the lipids in beef heart mitochondria. In both cases the chief phospholipids were phosphatidylcholine and phosphatidylethanolamine. A characteristic feature of plant mitochondria was the presence of monogalactosyl- and digalactosyldiglyceride and of sulfolipid. Potato mitochondria differed from the particles of other species investigated by their higher content of galactolipids, sterol glycosides, and carotenoids and lower content of phospholipids and of total lipids in the lipidprotein complex. The galactolipid content was markedly higher in chloroplasts from all sources than in mitochondria. The spectrum of lipids in the phospholipid fraction differed more strikingly between chloroplasts of the leaf and the mitochondria of the bud of cauliflower than between the two organelles of the avocado mesocarp. The fatty acid distribution of individual lipids and of classes of lipids was also more similar in the two organelles of the fruit tissue than in the cauliflower material.  相似文献   

17.
An exposure of cultured hippocampal neurons expressing mitochondrially targeted enhanced yellow fluorescent protein to excitotoxic glutamate resulted in reversible mitochondrial remodeling that in many instances could be interpreted as swelling. Remodeling was not evident if glutamate receptors were blocked with MK801, if Ca(2+) was omitted or substituted for Sr(2+) in the bath solution, if neurons were treated with carbonylcyanide p-trifluoromethoxyphenylhydrazone to depolarize mitochondria, or if neurons were pretreated with cyclosporin A or N-methyl-4-isoleucine-cyclosporin (NIM811) to inhibit the mitochondrial permeability transition. In the experiments with isolated brain synaptic or nonsynaptic mitochondria, Ca(2+) triggered transient, spontaneously reversible cyclosporin A-sensitive swelling closely resembling remodeling of organelles in cultured neurons. The swelling was accompanied by the release of cytochrome c, Smac/DIABLO, Omi/HtrA2, and AIF but not endonuclease G. Depolarization with carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the Ca(2+) uniporter with Ru360 prevented rapid onset of the swelling. Sr(2+) depolarized mitochondria but failed to induce swelling. Neither inhibitors of the large conductance Ca(2+)-activated K(+) channel (charybdotoxin, iberiotoxin, quinine, and Ba(2+)) nor inhibitors of the mitochondrial ATP-sensitive K(+) channel (5-hydroxydecanoate and glibenclamide) suppressed swelling. Quinine, dicyclohexylcarbodiimide, and Mg(2+), inhibitors of the mitochondrial K(+)/H(+) exchanger, as well as external alkalization inhibited a recovery phase of the reversible swelling. In contrast to brain mitochondria, liver and heart mitochondria challenged with Ca(2+) experienced sustained swelling without spontaneous recovery. The proposed model suggests an involvement of the Ca(2+)-dependent transient K(+) influx into the matrix causing mitochondrial swelling followed by activation of the K(+)/H(+) exchanger leading to spontaneous mitochondrial contraction both in situ and in vitro.  相似文献   

18.
In higher plants, photorespiratory Gly oxidation in leaf mitochondria yields ammonium in large amounts. Mitochondrial ammonium must somehow be recovered as glutamate in chloroplasts. As the first step in that recovery, we report glutamine synthetase (GS) activity in highly purified Arabidopsis thaliana mitochondria isolated from light-adapted leaf tissue. Leaf mitochondrial GS activity is further induced in response to either physiological CO(2) limitation or transient darkness. Historically, whether mitochondria are fully competent for oxidative phosphorylation in actively photorespiring leaves has remained uncertain. Here, we report that light-adapted, intact, leaf mitochondria supplied with Gly as sole energy source are fully competent for oxidative phosphorylation. Purified intact mitochondria efficiently use Gly oxidation (as sole energy, NH(3), and CO(2) source) to drive conversion of l-Orn to l-citrulline, an ATP-dependent process. An A. thaliana genome-wide search for nuclear gene(s) encoding mitochondrial GS activity yielded a single candidate, GLN2. Stably transgenic A. thaliana ecotype Columbia plants expressing a p35S::GLN2::green fluorescent protein (GFP) chimeric reporter were constructed. When observed by laser scanning confocal microscopy, leaf mesophyll and epidermal tissue of transgenic plants showed punctate GFP fluorescence that colocalized with mitochondria. In immunoblot experiments, a 41-kD chimeric GLN2::GFP protein was present in both leaf mitochondria and chloroplasts of these stably transgenic plants. Therefore, the GLN2 gene product, heretofore labeled plastidic GS-2, functions in both leaf mitochondria and chloroplasts to faciliate ammonium recovery during photorespiration.  相似文献   

19.
J. Ishihara  J. Y. Pak  T. Fukuhara  T. Nitta 《Planta》1992,187(4):475-482
Linear dsRNAs (double-stranded RNAs) belonging to several distinct size classes were found to be localized in chloroplasts and mitochondria of Bryopsis spp., raising the possibility that these dsRNAs are prokaryotic in nature. The algal cytosol and nuclei did not contain dsRNAs. The amount of the dsRNAs in the organelles appeared constant, and there were about 500 copies per chloroplast. The four major dsRNAs from Bryopsis chloroplasts were about 2 kbp (kilobase pairs) in length and originated from discrete isometric particles of about 25 nm diameter. These virus-like particles were purified by CsCl density gradient centrifugation after extraction from isolated chloroplasts with chloroformbutanol and subsequent precipitation with polyethylene glycol. They had a buoyant density of about 1.40 g · cm–3 and contained four major and three minor proteins. Mitochondrial dsRNAs were about 4.5 kbp in length and formed less-stable particles of about 40 nm in diameter with a buoyant density of 1.47 g · cm–3. Some observations support the hypothesis that vertical transmission of the protein-coated, non-infectious dsRNAs occurs within cell organelles. Double-stranded RNAs of various sizes were found in most green, red, and brown algae. The characteristics of the algal dsRNAs are compared with those of dsRNAs from higher plants and the biological significance of the dsRNAs in cell organelles is discussed.Abbreviations dsRNA double-stranded RNA - kbp kilobase pairs - SDS sodium dodecyl sulfate - SSC 0.15 M NaCl 0.015 M sodium citrate - PAGE polyacrylamide gel electrophoresis The authors would like to express their gratitude to Dr. T. Natsuaki, Utsunomiya University, and Dr. D. Hosokawa, Tokyo University of Agriculture and Technology, for their helpful suggestions throughout this research. They are also much indebted to Dr. B. Wang, Institute of Genetics, Academia Sinica, Beijing, PRC, for his suggestions on rice dsRNA, and to Dr. T. Kohbara, Senshu University, on Bryopsis cells. Sincere thanks are also due to Dr. T. Misonou, Yamanashi University, and Dr. K. Masuda, Akita Prefectural College of Agriculture, for supplying plant materials; to Dr. N. Sonoki, Azabu University, for nucleotide analysis of dsRNAs; and to Y. Koshino for technical assistance. This research was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture of Japan.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号