首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Peroxisome proliferator-activated receptors are nuclear receptors highly expressed in intestinal epithelial cells (IEC) and immune cells within the gut mucosa and are implicated in modulating inflammation and immune responses. The objective of this study was to investigate the effect of targeted deletion of PPAR γ in IEC on progression of experimental inflammatory bowel disease (IBD).

Methodology/Principal Findings

In the first phase, PPAR γ flfl; Villin Cre- (VC-) and PPAR γ flfl; Villin Cre+ (VC+) mice in a mixed FVB/C57BL/6 background were challenged with 2.5% dextran sodium sulfate (DSS) in drinking water for 0, 2, or 7 days. VC+ mice express a transgenic recombinase under the control of the Villin-Cre promoter that causes an IEC-specific deletion of PPAR γ. In the second phase, we generated VC- and VC+ mice in a C57BL/6 background that were challenged with 2.5% DSS. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to phenotypically characterize lymphocyte and macrophage populations in blood, spleen and mesenteric lymph nodes. Global gene expression analysis was profiled using Affymetrix microarrays. The IEC-specific deficiency of PPAR γ in mice with a mixed background worsened colonic inflammatory lesions, but had no effect on disease activity (DAI) or weight loss. In contrast, the IEC-specific PPAR γ null mice in C57BL/6 background exhibited more severe inflammatory lesions, DAI and weight loss in comparison to their littermates expressing PPAR γ in IEC. Global gene expression profiling revealed significantly down-regulated expression of lysosomal pathway genes and flow cytometry results demonstrated suppressed production of IL-10 by CD4+ T cells in mesenteric lymph nodes (MLN) of IEC-specific PPAR γ null mice.

Conclusions/Significance

Our results demonstrate that adequate expression of PPAR γ in IEC is required for the regulation of mucosal immune responses and prevention of experimental IBD, possibly by modulation of lysosomal and antigen presentation pathways.  相似文献   

2.
We investigated how p38α mitogen-activated protein kinase (p38) is related to kainate-induced epilepsy and neuronal damages, by using the mice with a single copy disruption of the p38 α gene (p38α+/?). Mortality rate and seizure score of p38α+/? mice administered with kainate were significantly reduced compared with the case of wild-type (WT) mice. This was clearly supported by the electroencephalography data in which kainate-induced seizure duration and frequency in the brain of p38α+/? mice were significantly suppressed compared to those of WT mice. As a consequence of seizure, kainate induced delayed neuronal damages in parallel with astrocytic growth in the hippocampus and ectopic innervation of the mossy fibers into the stratum oriens in the CA3 region of hippocampus in WT mice, whose changes were moderate in p38α+/? mice. Likewise, kainate-induced phosphorylation of calcium/calmodulin-dependent kinase II in the hippocampus of p38α +/? mice was significantly decreased compared to that of WT mice. These results suggest that p38α signaling pathway plays an important role in epileptic seizure and excitotoxicity.  相似文献   

3.
MAPKs engage substrates, MAP2Ks, and phosphatases via a docking groove in the C-terminal domain of the kinase. Prior crystallographic studies on the unphosphorylated MAPKs p38α and ERK2 defined the docking groove and revealed long-range conformational changes affecting the activation loop and active site of the kinase induced by peptide. Solution NMR data presented here for unphosphorylated p38α with a MEK3b-derived peptide (p38α/pepMEK3b) validate these findings. Crystallograhic data from doubly phosphorylated active p38α (p38α/T?GY?/pepMEK3b) reveal a structure similar to unphosphorylated p38α/MEK3b, and distinct from phosphorylated p38γ (p38γ/T?GY?) and ERK2 (ERK2/T?EY?). The structure supports the idea that MAP kinases adopt three distinct conformations: unphosphorylated, phosphorylated, and a docking peptide-induced form.  相似文献   

4.
The regulation of skeletal muscle formation (myogenesis) is essential for normal development as well as in pathological conditions such as muscular dystrophies and inflammatory myopathies. Findings published over the past years have established a key role for the p38 MAP kinase signaling pathway in the control of muscle gene expression and myotube formation. However, the relative contribution of the four p38 MAP kinases (p38α, p38β, p38γ and p38δ) to this process was unknown. We have recently demonstrated that myoblasts lacking p38α, but not those lacking p38β or p38δ, were unable to differentiate and form multinucleated myotubes, while p38γ-deficient myoblasts exhibited an attenuated fusion capacity. Defective myogenesis in the absence of p38α was attributed to delayed cell cycle exit and continuous proliferation in differentiation-promoting conditions, caused by enhanced activation of the JNK/cJun pathway. We discuss these findings in the context of the emerging crosstalk of p38 and JNK signaling pathways in controlling cell growth and differentiation.  相似文献   

5.
Although adult mammals are unable to significantly regenerate their heart, this is not the case for a number of other vertebrate species. In particular, zebrafish are able to fully regenerate their heart following amputation of up to 20% of the ventricle. Soon after amputation, cardiomyocytes dedifferentiate and proliferate to regenerate the missing tissue. More recently, identical results have also been obtained in neonatal mice. Ventricular amputation of neonates leads to a robust regenerative response driven by the proliferation of existing cardiomyocytes in a similar manner to zebrafish. However, this ability is progressively lost during the first week of birth. The fact that adult zebrafish retain the capacity to regenerate their heart suggests that they either possess a unique regenerative mechanism, or that adult mammals lose/ inhibit this process. p38α ΜAPK has previously been shown to negatively regulate the proliferation of adult mammalian cardiomyocytes. We sought to determine whether a similar mechanism exists in adult zebrafish, and whether this needs to be overcome to allow regeneration to proceed. To determine whether p38α ΜAPK also regulates zebrafish cardiomyocytes in a similar manner, we generated conditional transgenic zebrafish in which either dominant-negative or active p38α ΜAPK are specifically expressed in cardiomyocytes. We found that active p38α ΜAPK but not dominantnegative p38α ΜAPK blocks proliferation of adult zebrafish cardiomyocytes and, consequently, heart regeneration as well. It appears that adult zebrafish cardiomyocytes share many characteristics with adult mammalian cardiomyocytes, including p38α MAPK-mediated cell cycle inhibition. These findings raise the possibility that zebrafish-like heart regeneration could be achieved in adult mammals.  相似文献   

6.
Although adult mammals are unable to significantly regenerate their heart, this is not the case for a number of other vertebrate species. In particular, zebrafish are able to fully regenerate their heart following amputation of up to 20% of the ventricle. Soon after amputation, cardiomyocytes dedifferentiate and proliferate to regenerate the missing tissue. More recently, identical results have also been obtained in neonatal mice. Ventricular amputation of neonates leads to a robust regenerative response driven by the proliferation of existing cardiomyocytes in a similar manner to zebrafish. However, this ability is progressively lost during the first week of birth. The fact that adult zebrafish retain the capacity to regenerate their heart suggests that they either possess a unique regenerative mechanism, or that adult mammals lose/ inhibit this process. p38α ΜAPK has previously been shown to negatively regulate the proliferation of adult mammalian cardiomyocytes. We sought to determine whether a similar mechanism exists in adult zebrafish, and whether this needs to be overcome to allow regeneration to proceed. To determine whether p38α ΜAPK also regulates zebrafish cardiomyocytes in a similar manner, we generated conditional transgenic zebrafish in which either dominant-negative or active p38α ΜAPK are specifically expressed in cardiomyocytes. We found that active p38α ΜAPK but not dominantnegative p38α ΜAPK blocks proliferation of adult zebrafish cardiomyocytes and, consequently, heart regeneration as well. It appears that adult zebrafish cardiomyocytes share many characteristics with adult mammalian cardiomyocytes, including p38α MAPK-mediated cell cycle inhibition. These findings raise the possibility that zebrafish-like heart regeneration could be achieved in adult mammals.  相似文献   

7.
8.
The epithelium of mucosal and skin surfaces serves as a permeability barrier and affords mechanisms for local immune defense. Crucial to the development and maintenance of a properly functioning epithelium is the balance of cell proliferation, differentiation, and death. Here we show that this balance depends on cross-regulatory interactions among multiple protein kinase-mediated signals and their coordinated transmission. From an investigation of conditional gene knock-out mice, we find that epithelial-specific loss of the protein kinase p38α leads to aberrant activation of TAK1, JNK, EGF receptor, and ERK in distinct microanatomical areas of the intestines and skin. Consequently, the epithelial tissues display excessive proliferation, inadequate differentiation, and sensitivity to apoptosis. These anomalies leave the tissue prone to damage and collapse at the trigger of an environmental insult. The vulnerability of p38α-deficient epithelium predicts adverse effects of long term pharmacological p38α inhibition; yet such limitations could be overcome by concomitant blockade of one or more of the dysregulated protein kinase signaling pathways.  相似文献   

9.
10.
The tumor suppressor protein p53 plays a major role in preserving genomic stability. p53 suppresses a pathway leading from normal diploidy to neoplastic aneuploidy (via an intermediate metastable stage of tetraploidy) at two levels: first by preventing the generation/survival of tetraploid cells, and second by repressing their aberrant multipolar division. Here, we report the characterization of p53-/- tetraploid cells, which - at difference with both their p53-/- diploid and their p53+/+ tetraploid counterparts - manifest a marked hyperphosporylation of the mitogen-activated protein kinase MAPK14 (best known as p38α) that is particularly strong during mitosis. In p53-/- tetraploid cells, phosphorylated p38α accumulated at centrosomes during the metaphase and at midbodies during the telophase. Selective knockdown or pharmacological inhibition of p38α had a dramatic effect on p53-/- (but not p53+/+) tetraploids, causing the activation of the spindle assembly checkpoint, an arrest during the metaphase, a major increase in abnormal bipolar and monopolar mitoses, as well as an increment in the generation of multinuclear cells. We conclude that the mitotic progression of p53-/- (but not p53+/+) tetraploids heavily relies on p38α, revealing a novel function for this protein in the context of aneuploidizing cell divisions.  相似文献   

11.
Mitogen-activated protein kinase (MAPK) p38α was shown to be implicated in the organogenesis of the placenta, and such placental alteration is crucial for the development of hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. We aimed to analyze for the first time human placental expression of MAPK p38α in pregnancies complicated by HELLP. The placental expression of MAPK p38α was investigated by semiquantitative polymerase chain reaction using cDNA extracted from placental tissue of 15 pregnancies with HELLP syndrome and 15 gestational age-matched controls. Seven patients with HELLP also had intrauterine fetal growth restriction (IUGR). In placenta from pregnancy complicated by HELLP, the expression of MAPK p38α is significantly decreased compared to the group with normal pregnancy (p < 0.001), while no difference was found between the HELLP and HELLP with IUGR subpopulations. Our study shows for the first time that MAPK p38α is expressed in the human placenta. Pregnancies with placental dysfunction and hypertensive complications are characterized by a significantly decreased expression of MAPK p38α. Our observations suggest that p38 MAPK signaling may be essential in placental angiogenesis and functioning.  相似文献   

12.
13.
We studied the influence of the neuroendocrine system on the development of humoral immune response to sheep erythrocytes in rat fetuses. The removal of brain in utero by decapitation of 18-day fetuses induced a fourfold increase in the number of antibody-forming cells in the liver, as compared to the unoperated fetuses. After the removal of the forebrain, including hypothalamus (encephalectomy), the number of antibody-forming cells was comparable to that in unoperated fetuses. The observed increase in the number of antibody-forming cells in the liver was not due to a disturbed migration of precursors of B-lymphocytes in the spleen, since their content in the spleen was also four times that in the encephalectomized and unoperated fetuses. The increased number of antibody-forming cells in decapitated fetuses could be due to an enhanced proliferative activity of the lymphocytes in the liver of these fetuses. It has been proposed that humoral immunity is controlled by the hypothalamo–pituitary–adrenal system already during prenatal development; the adrenocorticotropic hormone and glucocorticoids appear to be involved in this regulation.  相似文献   

14.
Signaling processes are primarily promoted by molecular recognition and corresponding protein-protein interactions. One of the key eukaryotic signaling pathways is the MAP kinase cascade involved in vital cellular processes such as cell proliferation, differentiation, apoptosis, and stress response. The principle recognition site of MAP kinases, the common docking (CD) region, forms selective interactions with substrates, upstream activators, and phosphatases. A second docking site, defined as the DEF site interaction pocket (DEF pocket), is formed subsequent to ERK2 and p38α activation. Both crystal structures of p38α in its dually phosphorylated form and of intrinsically active mutants showed the DEF pocket, giving motivation for studying its role in substrate activation and selectivity. Mutating selected DEF pocket residues significantly decreased the phosphorylation levels of three p38α substrates (ATFII, Elk-1, and MBP) with no apparent effect on the phosphorylation of MK2 kinase. Conversely, mutating the CD region gave the opposite effect, suggesting p38α substrates can be classified into DEF-dependent and DEF-independent substrates. In addition, mutating DEF pocket residues decreased the autophosphorylation capability of intrinsically active p38α mutants, suggesting DEF-mediated trans-autophosphorylation in p38α. These results could contribute to understanding substrate selectivity of p38α and serve as a platform for designing p38α-selective DEF site blockers, which partially inhibit p38α binding DEF-dependent substrates, whereas maintaining its other functions intact. In this context, preliminary results using synthetic peptides reveal significant inhibition of substrate phosphorylation by activated p38α.  相似文献   

15.
16.
Enucleation of erythroblasts during terminal differentiation is unique to mammals. Although erythroid enucleation has been extensively studied, only a few genes, including retinoblastoma protein (Rb), have been identified to regulate nuclear extrusion. It remains largely undefined by which signaling molecules, the extrinsic stimuli, such as erythropoietin (Epo), are transduced to induce enucleation. Here, we show that p38α, a mitogen-activated protein kinase (MAPK), is required for erythroid enucleation. In an ex vivo differentiation system that contains high Epo levels and mimics stress erythropoiesis, p38α is activated during erythroid differentiation. Loss of p38α completely blocks enucleation of primary erythroblasts. Moreover, p38α regulates erythroblast enucleation in a cell-autonomous manner in vivo during fetal and anemic stress erythropoiesis. Markedly, loss of p38α leads to downregulation of p21, and decreased activation of the p21 target Rb, both of which are important regulators of erythroblast enucleation. This study demonstrates that p38α is a key signaling molecule for erythroblast enucleation during stress erythropoiesis.  相似文献   

17.

Background and Aims

Although Hnf1α is crucial for pancreas and liver functions, it is believed to play a limited functional role for intestinal epithelial functions. The aim of this study was to assess the consequences of abrogating Hnf1α on the maintenance of adult small intestinal epithelial functions.

Methodology/Principal Findings

An Hnf1α knockout mouse model was used. Assessment of histological abnormalities, crypt epithelial cell proliferation, epithelial barrier, glucose transport and signalling pathways were measured in these animals. Changes in global gene expression were also analyzed. Mice lacking Hnf1α displayed increased crypt proliferation and intestinalomegaly as well as a disturbance of intestinal epithelial cell lineages production during adult life. This phenotype was associated with a decrease of the mucosal barrier function and lumen-to-blood glucose delivery. The mammalian target of rapamycin (mTOR) signalling pathway was found to be overly activated in the small intestine of adult Hnf1α mutant mice. The intestinal epithelium of Hnf1α null mice displayed a reduction of the enteroendocrine cell population. An impact was also observed on proper Paneth cell differentiation with abnormalities in the granule exocytosis pathway.

Conclusions/Significance

Together, these results unravel a functional role for Hnf1α in regulating adult intestinal growth and sustaining the functions of intestinal epithelial cell lineages.  相似文献   

18.
A novel series of p38 MAP kinase inhibitors with high selectivity for the p38α isoform over the other family members including the highly homologous p38β isoform has been identified. X-ray co-crystallographic studies have revealed an unprecedented kinase binding mode in p38α for representative analogs, 5c and 9d, in which a Leu108/Met109 peptide flip occurs within the p38α hinge region. Based on these findings, a general strategy for the rational design of additional promising p38α isoform selective inhibitors by targeting this novel binding mode is proposed.  相似文献   

19.
《Autophagy》2013,9(2):292-293
Autophagy is induced in mammalian cells by nutrient deprivation, which acts through repression of the protein kinase mammalian target of rapamycin (mTOR) and may involve other unknown mechanisms. Mitogen-activated protein kinases (MAPKs), and in particular p38 MAPK, are implicated in amino acid signalling. Furthermore, the extracellular signal-regulated kinase (ERK) and p38 regulate autophagy in response to various stimuli. However, the molecular mechanisms of p38 regulation of autophagy are still widely unknown. Our recent data suggest that p38α MAPK negatively regulates the interaction of mAtg9 and a novel mAtg9 binding partner, p38IP, to control the levels of autophagy induced in response to starvation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号