首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
目的:优化β-聚苹果酸(PMLA)的合成路线,制备部分氢化的聚苹果酸苄基酯(PMLABz),为构建载药纳米胶束提供两亲性聚合物载体。方法:分别以L-天冬氨酸和L-苹果酸为原料,合成单体β-苄氧羰基-β-丙内酯,再通过阴离子开环聚合制备PMLABz,最终氢化制备PMLA。X射线衍射仪、差示扫描量热仪等对材料的性质进行表征,L929成纤维细胞测定聚合物的细胞毒性,透析法制备部分氢化的聚苹果酸苄基酯空白胶束。结果:通过优化反应条件,以L-苹果酸为原料合成关键中间体β-苄氧羰基-β-丙内酯的终产率为31.5%,对比文献报道的L-天冬氨酸合成路线,产率提高近7倍。X-RD结果表明以L-苹果酸为原料制备的PMLABz有明显的衍射峰,结晶度高,熔点随之升高,MTT实验证实PMLABz无毒性。部分氢化的PMLABz可在水中自组装成一定粒径的胶束,氢化77%的PMLABz可得到粒径均匀、形态良好的纳米胶束。结论:分别以L-天冬氨酸和L-苹果酸为原料合成聚苹果酸,优化合成路线,提高终产率,得到了新晶型PMLABz,并通过部分氢化PMLABz制备两亲性聚合物进而得到纳米胶束,为后期纳米释药体系研究提供优良载体。  相似文献   

2.
目的:以实验室制得的聚苹果酸(PMLA)为高分子骨架,通过酰胺化反应将多巴胺(DA)分子连接到聚苹果酸,制得既具有良好粘合性能,又有优异生物相容性的贻贝仿生粘合剂。方法:L-天冬氨酸通过内酯开环聚合法合成高分子化合物聚苹果酸,将PMLA与DA加EDC/NHS反应得到粘合剂PMLA-DA,傅里叶变换红外光谱、核磁氢谱、紫外可见光光谱等对其进行结构表征,标准曲线法测多巴胺取代度,采用搭接剪切测试法评估粘合剂对不锈钢、玻璃、猪皮三种材质的粘合强度,MTT法检测贻贝仿生粘合剂的细胞毒性,通过降解试验验证PMLA-DA的降解性能。结果:测得PMLA-DA中多巴胺的取代度能达到21.3%,搭接剪切试验测得粘合剂对猪皮的粘合强度为22.68 kPa,高于目前市场上常用的生物医用粘合剂纤维蛋白胶15.38 kPa的粘合强度,PMLA-DA对不锈钢与玻璃亦有很好的粘合性能。细胞毒性研究和体外降解试验显示PMLA-DA无细胞毒性,降解性能良好。结论:通过聚苹果酸与多巴胺反应制得贻贝仿生粘合剂PMLA-DA,该粘合剂对多种材质均具有良好的粘合力;无细胞毒性,降解性能良好,对皮肤组织的粘合强度优于目前商用的生物粘合剂纤维蛋白胶。无论是对无机材料间的粘接,或者是医学领域的伤口粘合,均具有良好的应用前景。  相似文献   

3.
摘要:天然和合成聚合物因优良的特性引起了越来越多研究者的兴趣,并已被广泛用于人类的日常生活中。聚苹果酸(Polymalic acid,PMLA)一种天然的高分子聚酯材料,具有良好的生物相容性和完全生物降解性,其衍生物同样具有优异的生物学性能,被广泛应用于众多领域中。本文就聚苹果酸及其衍生物的结构、性质和合成方法进行了概述,并全面总结了其在制药和其他领域的应用研究现状,最后对未来发展方向进行了展望。  相似文献   

4.
段晓  李伟  乔友备  范黎  吴红 《现代生物医学进展》2013,13(14):2625-2628,2621
目的:为构建聚合物胶束药物运载体系,制备嵌段共聚物聚乙二醇-聚苹果酸苄基酯载药胶束并测定其性质。方法:以L-天冬氨酸为原料,重氮化、环化后经开环聚合得到聚苹果酸苄基酯。氨基聚乙二醇通过酰胺键连接到β-聚苹果酸苄基酯上形成两亲性嵌段共聚物,喜树碱做药物模型制备载药胶束。动态光散射法测定胶束粒径、评价胶束稳定性,高效液相法测定喜树碱载药率和包封率,芘荧光法与动态光散射法测定临界胶束浓度。结果:喜树碱包封率72%,载药率6%,临界胶束浓度为40μg.mL-1。随着聚苹果酸苄基酯分子量减小,胶束稳定性增强。结论:聚乙二醇-聚苹果酸苄基酯在疏水链/亲水链分子量比值为2-4时在水中可自组装形成纳米胶束,可作为性能优良的聚合物药物载体。  相似文献   

5.
目的:制备载羟基喜树碱(HCPT)的PLGA-hyd-PEG-FA纳米粒(HCPT@PLGA-hyd-PEG-FA),并对其体外抗肿瘤活性进行研究。方法:采用乳化溶剂挥发法制备HCPT@PLGA-hyd-PEG-FA,通过单因素试验考察超声功率、聚合物浓度、PVA浓度、水相和油相体积比及投药量对纳米粒粒径的影响;采用zeta电位及激光粒度分析仪测定纳米粒的粒径及zeta电位,用透射电镜(TEM)观察其形态;采用透析法评价HCPT@PLGA-hyd-PEG-FA的体外释药特性;采用MTT法测定HCPT@PLGA-hyd-PEG-FA对HepG2细胞的细胞毒性。结果:HCPT@PLGA-hyd-PEG-FA平均粒径约为109±3 nm,zeta电位为-11.57 mV,载药量为5.6%,TEM显示其为球形;体外释药结果表明HCPT@PLGA-hyd-PEG-FA对HCPT的释放具有p H值依赖性;HCPT和HCPT@PLGA-hyd-PEG-FA的IC50值分别为474.6 ng/mL和286.0 ng/mL。结论:HCPT@PLGA-hyd-PEG-FA体外释药性能良好,HCPT@PLGA-hyd-PEG-FA的细胞毒性明显大于游离的HCPT,值得进一步研究。  相似文献   

6.
目的:本研究旨在制备具有被动靶向和酸敏特性的脂质混合纳米粒,以期提高阿霉素(doxorubicin,DOX)的靶向递药效率,降低DOX的毒副作用,提高抗肿瘤活性。方法:采用微乳法制备磷酸钙纳米粒核,薄膜分散法制备脂质混合纳米粒,硫酸铵梯度法包封DOX。采用透射电镜观察外观形态,用zeta电位及纳米粒度分析仪测定纳米粒的粒径及zeta电位,透析法评价阿霉素脂质纳米粒体外释药特征。用MTT方法研究阿霉素脂质混合纳米粒对A549细胞的细胞毒性。采用流式细胞仪和激光共聚焦显微镜观察A549细胞对阿霉素脂质纳米粒的摄取。结果:体外释药结果显示阿霉素脂质纳米粒具有酸敏特性。流式结果说明A549细胞对阿霉素脂质纳米粒的摄取具有明显的时间依赖性,激光共聚焦显示阿霉素脂质纳米粒能将阿霉素递送至细胞核中。结论:阿霉素脂质体对A549细胞有明显的细胞毒性,为进一步进行体内实验提供了基础。  相似文献   

7.
目的:制备具有pH响应的甲氧基聚乙二醇甲基丙烯酸-2-六亚甲基亚胺乙酯聚合物,测试材料pH功能响应,以及建立聚合物纳米粒载药方法。方法:通过核磁共振氢谱鉴定ATRP(Atom Transfer Radical Polymerization)聚合反应所获得的化合物结构。滴加-搅拌挥发法制备聚乙二醇甲基丙烯酸-2-六亚甲基亚胺乙酯纳米粒,酶标仪测定其载药量和包封率。透射电镜下观察其形态,激光粒度仪分析测定其粒径,包载DiR红外荧光探针检测纳米粒pH响应功能。结果:分别成功合成得到2-溴代异丁酸聚乙二醇单甲醚和甲基丙烯酸-2-六亚甲基亚胺乙酯单体。通过ATRP聚合反应成功合成聚乙二醇甲基丙烯酸-2-六亚甲基亚胺乙酯聚合物材料,并通过核磁氢谱对聚合材料进行鉴定。通过滴加搅拌法制备包载有模型药物香豆素-6的纳米粒,并对纳米粒的形态表征及载药量进行测定。结论:试验结果表明制备得到的聚合物纳米粒尺寸均匀,具有预期的pH响应效果,可以装载模型药物。  相似文献   

8.
目的:制备聚苹果酸-聚乙二醇-叶酸(PMLA-PEG-FA)纳米共聚物,为构建多功能靶向药物转运系统提供前期工作.方法:配体叶酸(FA)通过α-羟基-ω-醛基聚乙二醇(HO-PEG-CHO)以腙键连接在经过水合肼修饰的聚苹果酸的主链上.核磁共振光谱表征纳米共聚物的结构,动态透析法研究腙键响应不同pH值的断键特性,监测不同pH值共聚物中叶酸的稳定性.并采用SMCC-7721人体肝癌细胞测定该纳米共聚物的细胞毒性.结果:1、经核磁共振表征PMLA-PEG-FA共聚物合成完成.2、在pH5.5、pH6.5及pH7.4的PBS缓冲体系中,6h后配体叶酸累积释放率分别为88.1%,85.3%和41.6%.3、MTT实验证实PMLA-PEG-FA无毒性.结论:PMLA-PEG-FA有望成为智能靶向药物载体.  相似文献   

9.
摘要 目的:本研究旨在制备用于肿瘤可视化光治疗的多功能Mn3O4@CuS核壳型纳米粒,在磁共振成像的引导下,使用近红外光定点辐照,实现局部光热消融治疗。方法:(1)采用高温热解法制备油胺稳定的Mn3O4纳米粒,在其表面构建CuS壳层,并进行聚乙二醇修饰,得到分散于水相中的Mn3O4@CuS核壳型纳米粒。(2)通过透射电镜、紫外可见近红外吸收光谱等方法对该纳米粒进行理化性质表征,并研究其体外磁共振成像、光热升温等性能。结果:制备的水相分散的Mn3O4@CuS纳米粒,粒径均一且分散性较好,形态为近圆形,粒径为9.30±2.29 nm;紫外可见近红外吸收光谱图表明Mn3O4@CuS纳米粒在近红外区有较强吸收,最大吸收峰位于1100~1200 nm范围;磁共振成像分析结果可计算出Mn3O4@CuS纳米粒的纵向弛豫率r1为1.662 mM-1s-1,表明其具有较好的磁共振增强造影效果;光热升温曲线显示Mn3O4@CuS纳米粒可在785 nm近红外激光下升温至73.5 ℃,具备较好的光热治疗潜力。结论:本文成功制备出水相分散的Mn3O4@CuS核壳型纳米粒,具有良好的磁共振造影成像性能和光热升温效应,有望应用于磁共振成像引导下的肿瘤可视化光治疗。  相似文献   

10.
摘要 目的:巨噬细胞具有炎症趋化能力,近年来巨噬细胞膜伪装的纳米递送载体引起研究者的广泛关注。本文提供了一种巨噬细胞膜伪装纳米颗粒的方法,即摄取-挤出法,并对该法制得的纳米颗粒进行表征,考察纳米颗粒在不同细胞中的摄取。方法:利用溶胶-凝胶法制备装载阿霉素的介孔硅(DMSN)纳米颗粒,再利用RAW 264.7巨噬细胞吞噬DMSN,最后将巨噬细胞连续挤出制得巨噬细胞膜伪装的载有阿霉素的介孔硅(DMSN@CM)纳米颗粒。动态光散射激光粒度仪(DLS)测定DMSN@CM颗粒的粒径和表面电位,透射电子显微镜(TEM)观察纳米颗粒形态,聚丙烯酰胺凝胶电泳(SDS-PAGE)验证细胞膜的成功伪装。然后通过激光共聚焦显微镜与流式细胞术共同考察了DMSN@CM在不同细胞中的摄取情况。结果:成功制备了DMSN和DMSN@CM纳米颗粒。DMSN粒径为116.7±3.2 nm,zeta表面电势为 -29.5± 1.3 mV;MSN@CM粒径为128.0±9.3 nm,zeta表面电势为 -26.7 ±1.2 mV。TEM与SDS-PAGE共同验证了DMSN@CM表面细胞膜的成功包覆。细胞摄取试验表明巨噬细胞膜的伪装可以抑制RAW 264.7细胞对DMSN@CM的摄取;促进MDA-MB-231细胞对DMSN@CM的摄取。结论:利用摄取-挤出法成功构建了DMSN@CM纳米颗粒,该法简便高效,为纳米颗粒的细胞膜伪装提供了一种新的手段。  相似文献   

11.
摘要 目的:制备肿瘤微环境响应释放的靶向二硫化钼纳米载药体系,并评价其载药量和释药性能。方法:以水热法合成的MoS2纳米片为基底,利用MoS2纳米片上的S空缺位点连接硫辛酸聚乙二醇羧酸,然后通过酰胺反应连接精氨酸-甘氨酸-天冬氨酸(RGD)靶向分子,再连接上交联剂3-(2-吡啶二硫代)丙酸N-琥珀酰亚胺酯(SPDP),得到药物载体MoS2-PEG-RGD-SPDP(MPRS),MPRS进一步与巯基化的阿霉素(DOX)反应,形成MPRS-DOX纳米载药体系。通过透射电子显微镜(TEM),X-射线光电子能谱仪(XPS)以及纳米粒度电位仪对合成的材料进行表征;利用紫外可见分光光度计测试MPRS的载药性能,采用荧光分光光度计考察MPRS-DOX的释药性能。结果:成功合成MPRS-DOX纳米载药体系,其粒径大小在200 nm左右,Zeta电位为+28.2 mV;其载药效率为86.8%,载药量为53.5%。体外释药实验表明,在10 mM 谷胱甘肽(GSH)和pH=5.5的条件下DOX释放量最多。结论:成功制备了粒径合适的MPRS-DOX纳米载药体系,MPRS-DOX具有GSH和pH双重响应性,可实现预期的模拟肿瘤微环境内控制释放药物。这种GSH和pH双重响应的纳米载药体系为新一代刺激响应型纳米载药系统的构建提供了新的思路。  相似文献   

12.
目的通过制备胶束化色胺酮,增加色胺酮的溶解度,并进一步提高其生物利用度。方法:以酸敏感的腙键连接聚乙二醇和色胺酮,并通过透析法,将聚乙二醇化色胺酮进一步制备成胶束。用动态光散射法测定胶束的粒径分布用透射电镜观察胶束的形貌。通过芘荧光探针法测定胶束的临界胶束浓度。测定胶束在不同pH下的药物释放情况(pH5.5和7.4)。采用薄层色谱法和高效液相色谱法研究腙键的断裂行为。通过CCK-8法比较生理pH和酸性pH下,色胺酮和聚乙二醇化色胺酮胶束(PTMs)对MCF-7细胞的体外细胞毒性。结果:与色氨酸相比,PTMs的溶解度提高了1493倍。制备的胶束粒径为228.8 nm,PDI为0.1,形貌为球形。PTMs的临界胶束浓度为3.5×10-7mol/L,较低的CMC值表明制备的胶束稳定性高,便于进一步使用。腙键可在酸性条件下发生断裂,且在pH 5.5下,12 h内95%的色胺酮从胶束中释放,而在生理pH下(pH 7.4),药物释放缓慢。在生理条件下胶束的细胞毒性低于色胺酮,说明胶束化色胺酮可降低药物毒性及胶束在生理条件下有一定的稳定性。而在pH 5.5时,色胺酮胶束与色胺酮的细胞毒性相近表明胶束可响应肿瘤细胞内的低pH值成功实现药物释放。结论:胶束化色胺酮不仅能有效改善色胺酮的溶解度,有利于进一步提高其生物利用度,而且是一种很有应用前景的肿瘤靶向前药。  相似文献   

13.
目的:制备粒径均一且稳定、载药率和包埋率较高的聚合物脂质纳米球。方法:将HSPC(氢化大豆卵磷脂)与PLGA(聚乳酸-羟基乙酸共聚物)两种材料结合,利用超声复乳法制备聚合物脂质纳米球,采用响应面法优化最佳制备工艺;以HSPC(氢化大豆卵磷脂)与PLGA(聚乳酸-羟基乙酸共聚物)的比例、PVA浓度、超声功率为条件优化制备参数,以粒径为响应值。结果:优化后的最佳工艺参数为:HSPC与PLGA的比例为1:10,PVA浓度为0.66%,超声功率为51.34%(205.36 W)。结论:按最优工艺制备出的聚合物脂质纳米粒的粒径为230 nm左右,多分散系数(PDI)值为0.057,与预测值偏差较小,且粒径分布均一,可作为蛋白及多肽类药物的递送载体。  相似文献   

14.
目的:探讨熊去氧胆酸(UDCA)对阿霉素(DOX)诱导的H9c2心肌细胞损伤的影响及机制.方法:体外培养H9c2细胞,1 μMDOX和不同浓度UDCA处理H9c2,CCK-8法测定细胞活力;实时定量聚合酶链反应检测心肌细胞凋亡分子Bax及炎症因子IL-1β、IL-6的表达;Western blotting检测UDCA对...  相似文献   

15.
目的:既往研究发现,趋化因子CCL20在银屑病、白癜风等在内的多种自身免疫性皮肤疾病的病理过程中扮演了重要的角色,同时病毒感染也被认为是自身免疫性疾病的重要参与者。皮肤组织是机体抵御外界病原体的第一道屏障,其中角质形成细胞被认为在启动免疫中发挥了关键的作用。视黄酸诱导基因蛋白I(RIG-I)是固有免疫模式识别受体家族的重要成员,其能够被病毒复制的中间产物激活。然而,病毒感染是否会通过RIG-I信号通路影响角质形成细胞中CCL20的表达,进而参与自身免疫性皮肤疾病的病理过程仍不清楚。本文使用聚肌胞苷酸(Poly(I:C))来体外模拟病毒感染,探究病毒感染对皮肤角质形成细胞CCL20表达的影响,并且通过小干扰RNA沉默关键分子来探究相应的分子机制。方法:首先,体外细胞实验使用Poly(I:C)刺激角质形成细胞系HaCaT,通过Western-blot实验和qRT-PCR实验探究Poly(I:C)对HaCat中RIG-I表达的影响;接下来,通过实时荧光定量PCR(qRT-PCR)以及酶联免疫吸附测定实验(ELISA)检测Poly(I:C)对角质形成细胞CCL20分泌的影响;线粒体抗病毒信号蛋白(MAVS)在RIG-I的下游发挥着重要作用,我们通过小干扰RNA(si-RNA)阻断RIG-I-MAVS-NF-κB信号通路关键分子,探究Poly(I:C)诱导角质形成细胞CCL20表达升高的分子机制。结果:Poly(I:C)能够明显促进角质形成细胞中RIG-I的表达及CCL20的表达和分泌;Poly(I:C)诱导角质形成细胞CCL20分泌是由RIG-I-MAVS-NF-κB信号通路介导的。结论:Poly(I:C)模拟病毒感染能够通过RIG-I-MAVS-NF-κB信号通路介导CCL20表达增加,进而参与自身免疫性皮肤疾病的病理过程。  相似文献   

16.
采用乳化聚合法制备阿霉素-姜黄素聚氰基丙烯酸正丁酯复方纳米粒(DOX-CUR-PBCA-NPs),该纳米粒平均粒径为133±5.34nm,Zeta电位为+32.23±4.56 mV,阿霉素(DOX)和姜黄素(CUR)的包封率分别为49.98±3.32%,94.52±3.14%.MTT实验结果和Western blott实验结果均表明,DOX-CUR-PBCA-NPs与CUR-PBCA-NPs+DOX-PBCA-NPs体外对MCF-7/ADR细胞的生长抑制活性相当,下调MCF-7/ADR细胞中P-糖蛋白(P-gp)的表达也相当,较没有用PBCA纳米粒包载的游离药物、单一药物的纳米制剂及其他形式的制剂联用的抗肿瘤活性及逆转多药耐药的性能都显著增强.说明利用PBCA纳米粒同时包裹抗癌药物阿霉素与中药逆转剂姜黄素协同用药可以增强克服多药耐药(MDR)的疗效.  相似文献   

17.
目的:本文研究了一种海藻酸钠漂浮微囊的制备方法用以实现胃部持续给药。方法:采用微胶囊发生器制备海藻酸钠漂浮微囊,壁材为海藻酸钠,芯材为食用油的漂浮微囊,衡量不同的制备参数对微囊的理化特性影响;采用克拉霉素作为模型脂溶性药物,测量漂浮药物递送系统的控制释放性质、以及微囊载药特性和小鼠体内漂浮验证。结果:成功制备出了具有漂浮特性的海藻酸钠微囊,其中泵送速度对微囊性质的影响最大。制备出的微囊具有低细胞毒性,可以实现90%的药物包埋率。此外,微囊可以在小鼠的胃中保存超过6小时,具有良好的漂浮特性。结论:海藻酸钠漂浮微囊是一种有效的胃部药物递送系统,可明显延长药物在胃部的滞留时间。  相似文献   

18.
目的:探索快速膨胀片层多孔壳聚糖止血海绵的制备工艺,评价止血海绵的理化性能及生物相容性,并探讨原料脱乙酰度对止血海绵性能的影响。方法:考察止血海绵的理化性质,包括扫描电子显微镜(SEM)观察表观形貌,检测力学性能、吸水率、快速吸水膨胀时间和膨胀率,研究其体内外的生物相容性,包括体外细胞毒性实验、动物皮内刺激实验和皮下植入实验。结果:确定了止血海绵的制备工艺,采用该工艺制备的止血海绵均具有片层多孔结构,且具有较高的力学强度和快速膨胀的特点。证实高脱乙酰度原料(DD=95.14%)制备的止血海绵力学性能、吸水率、膨胀率均优于低脱乙酰度原料(DD=69.70%)制备的止血海绵。脱乙酰度69.70%和脱乙酰度95.14%的壳聚糖止血海绵,拉伸强度分别为10.1 N和15.4 N,吸水率分别为1904%和2131%,吸水膨胀时间分别为13.4 s和14.0 s,膨胀率分别为8.4倍和10.8倍。体外细胞毒性实验表明脱乙酰度为95.14%的壳聚糖止血海绵更有利于细胞的增殖,皮内刺激和皮下植入实验结果表明脱乙酰度为95.14%的壳聚糖海止血海绵表现出更小的组织炎性反应。结论:脱乙酰度为95.14%的壳聚糖止血海绵具有优良的力学性能、优异的吸水膨胀能力以及良好的生物相容性,在临床止血特别是腔隙止血方面具有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号