首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Clinical observations have revealed a strong association between estrogen receptor alpha (ERα)-positive tumors and the development of bone metastases, however, the mechanism underlying this association remains unknown. We cultured MCF-7 (ERα-positive) on different rigidity substrates. Compared with cells grown on more rigid substrates (100 kPa), cells grown on soft substrates (10 kPa) exhibited reduced spreading ability, a lower ratio of cells in the S and G2/M cell cycle phases, and a decreased proliferation rate. Using stable isotope labeling by amino acids (SILAC), we further compared the whole proteome of MCF-7 cells grown on substrates of different rigidity (10 and 100 kPa), and found that the expression of eight members of chaperonin CCT increased by at least 2-fold in the harder substrate. CCT folding activity was increased in the hard substrate compared with the soft substrates. Amplified in breast cancer 1 (AIB1), was identified in CCT immunoprecipitates. CCT folding ability of AIB1 increased on 100-kPa substrate compared with 10- and 30-kPa substrates. Moreover, using mammalian two-hybrid protein-protein interaction assays, we found that the polyglutamine repeat sequence of the AIB1 protein was essential for interaction between CCTζ and AIB1. CCTζ-mediated AIB1 folding affects the cell area spreading, growth rate, and cell cycle. The expressions of the c-myc, cyclin D1, and PgR genes were higher on hard substrates than on soft substrate in both MCF-7 and T47D cells. ERα and AIB1 could up-regulate the mRNA and protein expression levels of the c-myc, cyclin D1, and PgR genes, and that 17 β-estradiol could enhance this effects. Conversely, 4-hydroxytamoxifen, could inhibit these effects. Taken together, our studies demonstrate that some ERα-positive breast cancer cells preferentially grow on more rigid substrates. CCT-mediated AIB1 folding appears to be involved in the rigidity response of breast cancer cells, which provides novel insight into the mechanisms of bone metastasis.  相似文献   

11.
12.
13.
14.
The Tongshu Capsule (TSC) is a prevalent form of traditional Chinese medicine widely used for its purported effects in treating mammary gland hyperplasia and inflammation. Though successful in several clinical studies, there is no clear evidence as to why TSC has a positive treatment effect, and little known about underlying mechanism that may account for it. In this study, we examined the effects of TSC and found that it has a comparatively strong growth inhibition on ERα positive breast cancer cells. TSC seems to cause G1 cell cycle arrest instead of apoptosis. Interestingly, TSC also down-regulated the expression of ERα and Cyclin D1. Consistently, TSC suppressed E2 mediated ERα downstream gene expression and cell proliferation in ERα positive breast cancer cell lines MCF7 and T47D. Depletion of ERα partially abolished the effects of TSC on the decrease of Cyclin D1 and cell viability. Our findings suggest that TSC may have therapeutic effects on ERα positive breast cancers and moreover that TSC may suppress breast epithelial cell proliferation by inhibiting the estrogen pathway.  相似文献   

15.
16.
MicroRNAs play key roles in tumor proliferation and invasion. Here we show distinct expression of miR-222-3p between ERα-positive and ERα-negative endometrial carcinoma (EC) cell lines and primary tumors, and investigation of its relationship with ERα and other clinical parameters. In vitro, the function of miR-222-3p was examined in RL95-2 and AN3CA cell lines. MiR-222-3p expression was negatively correlated with ERα. Over-expressed miR-222-3p in RL95-2 cells promoted cell proliferation, enhanced invasiveness and induced a G1 to S phase shift in cell cycle. Furthermore, the miR-222-3p inhibitor decreased the activity of AN3CA cells to proliferate and invade. In vivo, down-regulated miR-222-3p of AN3CA cells inhibited EC tumor growth in a mouse xenograft model. Additionally, miR-222-3p increased raloxifene resistance through suppressing ERα expression in EC cells. In conclusion, miR-222-3p plays a significant role in the regulation of ERα expression and could be potential targets for restoring ERα expression and responding to antiestrogen therapy in a subset of ECs.  相似文献   

17.
Select changes in microRNA (miRNA) expression correlate with estrogen receptor α (ERα) expression in breast tumors. miR-21 is higher in ERα positive than negative tumors, but no one has examined how estradiol (E2) regulates miR-21 in breast cancer cells. Here we report that E2 inhibits miR-21 expression in MCF-7 human breast cancer cells. The E2-induced reduction in miR-21 was inhibited by 4-hydroxytamoxifen (4-OHT), ICI 182 780 (Faslodex), and siRNA ERα indicating that the suppression is ERα-mediated. ERα and ERβ agonists PPT and DPN inhibited and 4-OHT increased miR-21 expression. E2 increased luciferase activity from reporters containing the miR-21 recognition elements from the 3′-UTRs of miR-21 target genes, corroborating that E2 represses miR-21 expression resulting in a loss of target gene suppression. The E2-mediated decrease in miR-21 correlated with increased protein expression of endogenous miR-21-targets Pdcd4, PTEN and Bcl-2. siRNA knockdown of ERα blocked the E2-induced increase in Pdcd4, PTEN and Bcl-2. Transfection of MCF-7 cells with antisense (AS) to miR-21 mimicked the E2-induced increase in Pdcd4, PTEN and Bcl-2. These results are the first to demonstrate that E2 represses the expression of an oncogenic miRNA, miR-21, by activating estrogen receptor in MCF-7 cells.  相似文献   

18.
Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ≥30 kg/m2; normal weight (N): 18.5–24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号