首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraoxonase 1 (PON 1) is a high‐density lipoprotein (HDL)‐associated enzyme with antioxidant function protecting low‐density lipoprotein (LDL) from oxidation. PON 1 has two amino acid polymorphisms in coding region; L/M 55 and Q/R 192. These polymorphisms modulate paraoxonase activity of the enzyme. PON 1 activity decreases in coronary artery disease (CAD). In the present study, distribution of PON 1 L/M 55 and Q/R 192 polymorphisms and the effect of these polymorphisms on the activities of PON 1, and on the severity of CAD in 277 CAD (+) patient and 92 CAD (?) subjects were examined. PON 1 L/M 55 and Q/R 192 genotypes were determined by PCR, RFLP and agarose gel electrophoresis techniques. Genotype distributions and allele frequencies for PON 1 Q/R 192 polymorphism were not significantly different between controls and CAD (+) patient group (p > 0.05), but in genotype and allele distribution of PON 1 L/M55 polymorphism, there was significantly difference among groups (p < 0.05). Genotype distributions for both polymorphisms were not significantly different between subgroups of single‐vessel disease (SVD), double‐vessel disease (DVD) and triple‐vessel disease (TVD). Serum PON 1 activity was lower in CAD (+) group than in controls and this was also statistically significant (p < 0.001). In both groups, the highest PON activities were detected in LL and RR genotypes. In summary, our results suggest that there is an association between the PON 1 L/M 55 polymorphism of paraoxonase and CAD in Turkish patients but not with PON 1 Q/R 192 polymorphism. However, it is hard to correlate these polymorphisms and severity of CAD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Increased oxidative stress can help promote carcinogenesis, including development of renal cell carcinoma. The enzyme protects low-density lipoproteins from oxidation and can be a factor in this process. PON1 Q192R and L55M paraoxonase gene polymorphisms were assessed in 60 renal cell carcinoma patients and 60 healthy controls. Genotypes were examined by PCR; the restriction enzyme AlwI was used to examine the Q192R polymorphism and Hsp92II for the L55M polymorphism. Significant differences in the PON1 Q192R polymorphism were found between patients and controls. The Q allele was more frequent in the patient group than in controls, while the R allele was more frequent in the control group. No significant differences were found in the L55M polymorphism. Additionally, there were no significant differences in L and M allele frequencies. We conclude that the R allele may protect against renal cell carcinoma.  相似文献   

3.
The aim of the present study was to examine the relation between two paraoxonase1 (PON1) polymorphisms, Q192R and L55M and susceptibility to gastric cancer in an Iranian population. In this case-control study the PON1 polymorphisms were assessed in 90 gastric cancer patients and 90 healthy controls by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method. Regarding PON1 Q192R polymorphism, a significant increase in the R allele in the patient group compared with the controls (p value?=?0.0006) While the Q allele was more frequent in the control group. No significant difference was found in the genotype or allele frequency of the L55M polymorphism between healthy individuals and patients with gastric cancer. Our results demonstrated the protective effect of Q allele against gastric cancer.  相似文献   

4.
We recently reported that oxidative stress is involved in the pathogenesis of coronary spasm. We hypothesized that oxidative-stress-related genetic factors and certain polymorphisms in the paraoxonase gene (PON1) and platelet-activating factor acetylhydrolase (PAF-AH) might influence the pathogenesis of coronary spasm. We therefore examined the possible association between the PON1 Q192R or PAF-AH V279F polymorphisms and coronary spasm in 214 patients with coronary spasm and 212 control subjects. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism analysis. The incidence of the PON1-192R allele was significantly higher in the coronary spasm group than in the control group (65% vs 53%; P=0.0005). The PAF-AH-279F allele was not associated with coronary spasm (15% vs. 16%; P=0.8781). Multiple logistic regression analysis with forward stepwise selection involving the PON1-192R allele and the environmental risk factors revealed that the most predictive independent risk factor for coronary spasm was the PON1-192R allele (significance=0.0016, OR=2.52), followed by cigarette smoking (significance=0.0007, OR=2.01). We also measured plasma levels of TBARS (thiobarbituric acid-reactive substances) as a marker of oxidative stress. TBARS levels were higher in R/R types than in Q/Q types (2.115+/-0.086 nmol/ml [ n=25] vs 1.676+/-0.102 nmol/ml [ n=11], P<0.01). Thus, there is a significant association between the PON1-192R allele and coronary spasm; the PON1-192R allele may play an important role in the genesis of coronary spasm, probably by attenuating the suppression of oxidative stress.  相似文献   

5.
Paraoxonase 1 (PON1), an antioxidant enzyme closely associated with HDL (high-density lipoproteins), preserves LDL (low-density lipoproteins) against oxidation. Less protection may be therefore supposed by decreased PON1 activity. This study was undertaken to investigate the association of PON1 gene polymorphisms with diabetic angiopathy and to evaluate the relationship of these polymorphisms with PON1 activity. Total of 86 Type 1 (T1DM) and 246 Type 2 (T2DM) diabetic patients together with 110 healthy subjects were examined. DNA isolated from leukocytes was amplified with polymerase chain reaction (PCR) followed by restriction enzyme digestion. The products were analyzed for L55M and Q192R polymorphisms in coding region and for -107 C/T and -907 G/C in promotor sequence of PON1. Serum enzyme activity was measured spectrophotometrically. Significant differences were found between T1DM or T2DM and control persons in L55M polymorphism (allele M more frequent in T1DM and T2DM vs. controls, p<0.05) and Q192R polymorphism (R allele less frequent in T1DM and T2DM vs. controls, p<0.01) of the PON1 gene. Serum PON1 activity was significantly decreased in T1DM (110+/-68 nmol/ml/min) and T2DM patients (118+/-69 nmol/ml/min) compared to the control persons (203+/-58 nmol/ml/min), both p<0.01. The presence of MM and QQ genotypes was accompanied by lower PON1 activity than of LL and RR genotypes (p<0.05), respectively. Better diabetes control was found in patients with LL than with MM genotypes and similarly in RR genotype than QQ genotype with p<0.05. Significantly different allele frequencies were found in diabetic patients with macroangiopathy than in those without it (M: 0.59 vs. 0.44. R: 0.12 vs. 0.19, p<0.01). The association of PON1 polymorphisms, lower PON1 activity and poorer diabetes control found in patients with macroangiopathy further support the idea of genetic factors contributing to the development of vascular disorders in diabetes.  相似文献   

6.
Paraoxonase is an HDL-associated enzyme that plays a preventive role against oxidative stres. Previous studies suggested that involved an amino acid substitution at position 192 gives rise to two alloenzymes with a low activity (Q allele) and a high activity (R allele) towards paraoxon. There also exists a second polymorphism of the human PON1 gene affecting amino acid 55, giving rise to a leucine (L-allele) substitution for methionine (M-allele). PON1 gene polymorphisms were studied in 50 patients with osteosarcoma and 50 healthy controls. Paraoxonase genotypes were determined by PCR–RFLP. We found a reduction in the frequency of PON1 192 R allele in patients (P = 0.015). Besides, PON1 192 wild type QQ genotype (P = 0.015) and PON1 55 wild type L allele (P = 0.001) were higher in patients compared to healthy controls. PON1 192 QQ genotype was associated with osteosarcoma in multivariate logistic regression analysis. Our findings have suggested that PON1 192 wild type genotypes may be associated with a risk of developing osteosarcoma.  相似文献   

7.
The vascular endothelial dysfunction has been implicated in the pathogenesis of migraine. Oxidized low‐density lipoprotein (ox‐LDL) may impair endothelial function. Paraoxonase‐1 (PON‐1) prevents oxidative modification of LDL cholesterol (LDL‐C). So we investigated serum PON‐1 and arylesterase (ARE) activities, PON‐1 55 L/M and 192Q/R polymorphisms and the serum lipid profile in patients with migraine. Biochemical parameters and PON‐1 polymorphism analyses were assessed in 104 patients with migraine and 86 healthy subjects. Ox‐LDL was detected by ELISA, and polymorphisms were determined using PCR–restriction fragment length polymorphism analysis. Patients with migraine had lower PON‐1 and ARE activities (p < 0·001, for both) and higher ox‐LDL and LDL‐C levels (p < 0·001, for both) and ox‐LDL: LDL‐C ratio (p < 0·005) than the controls. The genotype distribution and the allele frequencies for PON‐1 55 L/M and 192Q/R polymorphisms were not different among the study populations. The results of our current study indicate that migrainous patients have decreased serum PON‐1 and ARE activities and increased serum ox‐LDL levels, which may have a clinical importance in the treatment of migraine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
PON1 and PON2 have attracted considerable attention as candidate genes for coronary heart disease because their enzymes function as key factors in lipoprotein catabolism pathways. We studied the distribution of PON1 and PON2 polymorphisms, including genotyping, lipid profile, and PON1 activity, and their association with PON1 activity and significant coronary stenosis (SCS) in a Tunisian population. PON1 activity was lower in patients with SCS than in controls. It increased with the R allele (QQ < QR < RR) in PON1-192 genotypes and with the L allele (MM < ML < LL) in PON1-55 genotypes. In the presence of metabolic syndrome and diabetes, PON1-192RR and PON2-311CC were associated with an increased risk of SCS and PON1-55MM seems to have lower risk. This association was evident among nonsmokers for PON1-55MM and among smokers for PON1-192RR and PON2-311CC. The GTGC haplotype seemed to increase the risk of SCS compared with the wild haplotype in a Tunisian population.  相似文献   

9.

Objective

Paraoxonase-1 (PON1), an HDL-C associated enzyme, protects lipoproteins from oxidation. There is evidence that PON1 enzyme activity is reduced in the patients with type 2 diabetes mellitus (T2DM). North-West Indian Punjabis, a distinct ethnic group has high incidence of T2DM. However till date there is no information regarding PON1 enzyme activities and PON1 polymorphisms in T2DM patients of this ethnic group.

Methods

We identified polymorphisms in the coding Q192R, L55M and promoter − 909G/C, − 162A/G, − 108C/T of the PON1 gene by using PCR-RFLP, multiplex PCR and allele specific oligonucleotide PCR assays in 250 T2DM patients and 300 healthy controls. We also assessed paraoxonase (PONase) and arylesterase (AREase) activities of PON1 enzyme.

Results

The serum PONase (114.2 vs. 178.0 nmol/min/ml) and AREase (62.7 vs. 82.5 μmol/min/ml) activities were significantly lower (p < 0.0001) in patients as compared to controls. PONase activity was affected by all the studied PON1 polymorphisms. However, AREase activity was not affected by any of these polymorphisms. Coding Q192R and promoter − 909G/C polymorphisms showed significant differences in genotypic distribution. QR, RR (Q192R) and GC, CC (− 909G/C) genotypes and L-C-A-R-G, L-T-A-R-G, L-T-G-Q-C haplotypes showed significant association with type 2 diabetes. No significant linkage disequilibrium was observed among the five polymorphisms.

Conclusion

Both PONase and AREase activities are lower in patients and this could lead to increased lipid peroxidation and accelerated atherosclerosis in them. PONase activity, but not AREase activity is influenced by PON1 polymorphisms. QR, RR, GC, CC genotypes and L-C-A-R-G, L-T-A-R-G, L-T-G-Q-C haplotypes are commoner in diabetics as compared to controls and may be related to genetic susceptibility to type 2 diabetes.  相似文献   

10.
Background The aim of the present study was to investigate the association between genetic variants in metylenetetrahydrofolate reductase (MTHFR) and Paraoxonase-1 (PON1) 55/192 genes and total homocysteine (tHcy), folate, B12 vitamin, and PON1 levels in patients with coronary artery disease (CAD). Methods The study included 235 patients with CAD and 268 healthy control subjects. Results LL and LM genotypes and L allele of PON1 55 were over-represented in patients. In contrast, MM genotype and M allele were more frequent in controls. QQ genotype and Q allele of PON1 192 and CT genotype of MTHFR were significantly diminished and QR genotype and R allele were significantly elevated in CAD patients compared with controls. The plasma tHcy were elevated but B12 levels were diminished in patients. PON1 55 and 192 genetic variants were significantly associated with PON1 activity, triglyceride, total cholesterol, tHcy and, high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol in patients, respectively. Conclusion Genetic variants of PON1 55/192 and MTHFR were associated with CAD.  相似文献   

11.
PON基因簇潜在功能多态位点与冠心病的关联研究   总被引:1,自引:0,他引:1  
在中国汉族人群PON基因簇序列筛查研究基础上,系统探讨PON基因簇所有潜在功能多态位点与国人冠心病的关系,以期明确PON基因簇序列变异是否国人冠心病的遗传危险因素。随机入选1997~1999年期间阜外心血管病医院病房收治的经冠状动脉造影确诊和/或有明确急性心肌梗塞病史男性冠心病患者474例及年龄(±2岁)匹配的男性健康对照475例。PCR产物直接测序法鉴定PON1基因-1076A/G、-908G/C、-831G/A、-162G/A、-126G/C和-107C/T多态基因型;等位基因特异性扩增方法鉴定PON2基因的A148G和S311C多态;PCR RFLP方法鉴定PON1基因R160G、Q192R和PON3基因-133C/A多态。单变量分析显示192Q, 160R,-162A和311C等位基因频率在病例组中显著高于对照组。以这4个多态性位点作为自变量的多元Logis tic回归分析发现仅R160G和-162G/A多态仍然与冠心病显著关联(P值分别为0.0054和0.0002),并独立于冠心病传统危险因素。不同多态组合的单体型分析进一步证实了单一SNP分析的结果,只有包含160R或-162A 等位基因的单体型在病例组中的频率显著高于对照组。中国北方汉族人群中,PON1基因-162G/A和R160G多态与冠心病独立关联,提示PON1基因可能是冠心病易感基因。  相似文献   

12.
Serum paraoxonase-1 (PON1) is a high-density lipoprotein-associated enzyme that can inhibit low-density lipoprotein (LDL) oxidation in vitro. The role of PON1 in vivo still remains to be clarified. We investigated the effect of PON1 genotype (-107C > T and 192Q > R), concentration, paraoxonase activity, and arylesterase activity on the early phase of lipid peroxidation in plasma samples of 110 patients with heterozygous familial hypercholesterolemia. The degree of lipid oxidation was assessed by quantitation of oxidized-linoleic acid (the most abundant fatty acid present in LDL) using high performance liquid chromatography. We found a significant inverse correlation between paraoxonase activity and the oxidized-linoleic acid concentration (r = -0.22, P = 0.03), independent of baseline linoleic acid levels. These findings support an anti-oxidative role for PON1 in patients with FH, and thus may give insight into the functioning of PON1 in vivo.  相似文献   

13.
Abstract

Background

The metabolic syndrome (MetS) is a complex of multiple risk factors that contribute to the onset of cardiovascular disorder, including lowered levels of high-density lipoprotein (HDL) and abdominal obesity. Smoking, mood disorders, and oxidative stress are associated with the MetS. Paraoxonase (PON)1 is an antioxidant bound to HDL, that is under genetic control by functional polymorphisms in the PON1 Q192R coding sequence.

Aims and methods

This study aimed to delineate the associations of the MetS with plasma PON1 activity, PON1 Q192R genotypes, smoking, and mood disorders (major depression and bipolar disorder), while adjusting for HDL cholesterol, body mass index, age, gender, and sociodemographic data. We measured plasma PON1 activity and serum HDL cholesterol and determined PON1 Q192R genotypes through functional analysis in 335 subjects, consisting of 97 with and 238 without MetS. The severity of nicotine dependence was measured using the Fagerström Nicotine Dependence Scale.

Results

PON1 Q192R functional genotypes and PON1 Q192R genotypes by smoking interactions were associated with the MetS. The QQ and QR genotypes were protective against MetS while smoking increased metabolic risk in QQ carriers only. There were no significant associations between PON1 Q192R genotypes and smoking by genotype interactions and obesity or overweight, while body mass index significantly increased MetS risk. Smoking and especially severe nicotine dependence are significantly associated with the MetS although these effects were no longer significant after considering the effects of the smoking by PON1 Q192R genotype interaction. The MetS was not associated with mood disorders, major depression or bipolar disorder.

Discussion

PON1 Q192R genotypes and genotypes by smoking interactions are risk factors for the MetS that together with lowered HDL and increased body mass and age contribute to the MetS.  相似文献   

14.
Abstract

Paroxonase 1 displays multiple physiological activities that position it as a putative player in the pathogenesis of neurological disorders. Here we reviewed the literature focusing on the role of paraoxonase 1 (PON1) as a factor in the risk of stroke and the major neurodegenerative diseases. PON1 activity is reduced in stroke patients, which significantly correlates inversely with carotid and cerebral atherosclerosis. The presence of the R allele of the Q192R PON1 polymorphism seems to potentiate this risk for stroke. PON1 exerts peroxidase activities that may be important in neurodegenerative disorders associated with oxidative stress. PON1 is also a key detoxifier of organophosphates and organophosphate exposure has been linked to the development of neurological disorders in which acetylcholine plays a significant role. In Parkinson's disease most of the studies suggest no participation of either L55M or the Q192R polymorphisms in its pathogenesis. However, many studies suggest that the MM55 PON1 genotype is associated with a higher risk for Parkinson's disease in individuals exposed to organophosphates. In Alzheimer's disease most studies have failed to find any association between PON1 polymorphisms and the development of the disease. Some studies show that PON1 activity is decreased in patients with Alzheimer's disease or other dementias, suggesting a possible protective role of PON1. No links between PON1 polymorphisms or activity have been found in other neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis. PON1 is a potential player in the pathogenesis of several neurological disorders. More research is warranted to ascertain the precise pathogenic links and the prognostic value of its measurement in neurological patients.  相似文献   

15.
Detoxication of organophosphorus (OP) compounds is affected by genetic and environmental modulation of a number of enzymes involved in the process. For organophosphorothioate insecticides, different P450 isozymes and variants carry out two reactions that have quite different consequences; (1) they bioactivate their parent compounds to highly toxic oxon forms that are many times more toxic than the parent compounds, and (2) concurrently, they dearylate the parent OP compounds, generating much less toxic metabolites. The ratios at which these different P450s carry out bioactivation versus dearylation differ among the P450 isozymes. The detoxication of the oxon forms of diazinon and chlorpyrifos is achieved by hydrolysis to the respective aromatic alcohols and diethyl phosphates primarily by paraoxonase 1 (PON1), a plasma enzyme tightly associated with high-density lipoprotein particles and also found in liver. Stoichiometric binding to other targets also contributes to the detoxication of these oxons. PON1 is polymorphically distributed in human populations with an amino acid substitution (Gln/Arg) at position 192 of this 354-amino acid protein (the initiator Met residue is cleaved on maturation) that determines the catalytic efficiency of hydrolysis of some substrates. In addition to the variable catalytic efficiency determined by the position 192 amino acid, protein levels of PON1 vary by as much as 15-fold among individuals with the same PON1(192) genotype (Q/Q; Q/R; R/R). The generation of PON1 null mice and transgenic mice, expressing each of the human PON1(192) alloforms in place of mouse PON1, has allowed for the examination of the physiological function of the PON1(192) alloforms in OP detoxication. Sensitivity to diazoxon exposure is primarily determined by the plasma level of PON1, whereas for chlorpyrifos oxon exposure, both the plasma PON1 level and the position 192 amino acid are important--PON1(R192) is more efficient in inactivating chlorpyrifos oxon than is PON1(Q192). The availability of PON1 null mice provides an opportunity to examine the contribution of other enzymes in the OP detoxication pathways without PON1 interference.  相似文献   

16.
In mammals, serum paraoxonase (PON1) is tightly associated with high-density lipoprotein (HDL) particles. In human populations, PON1 exhibits a substrate dependent activity polymorphism determined by an Arg/Gln (R/Q) substitution at amino acid residue 192. The physiological role of this protein appears to be involvement in the metabolism of oxidized lipids. Several studies have suggested that the PON1R192 allele may be a risk factor in coronary artery disease. PON1 also plays an important role in the metabolism of organophosphates including insecticides and nerve agents. The PON1R192 isoform hydrolyzes paraoxon rapidly, but diazoxon, soman and sarin slowly compared with the PON1Q192 isoform. Both PON1 isoforms hydrolyze phenylacetate at approximately the same rate, while PON1R192 hydrolyzes chlorpyrifos oxon slightly faster than PONQ192. Animal model studies involving injection of purified rabbit PON1 into mice clearly demonstrated the ability of PON1 to protect cholinesterases from inhibition by OP compounds. The consequence of having low PON1 levels has been addressed with toxicology studies in PON1 knockout mice. These mice showed dramatically increased sensitivity to chlorpyrifos oxon, diazoxon and some increased sensitivity to the respective parent compounds. These observations are consistent with earlier studies that showed a good correlation between high rates of OP hydrolysis by serum PON1 and resistance to specific OP compounds. They are also consistent with the observations that newborns have an increased sensitivity to OP toxicity, due in part to their not expressing adult PON1 levels for weeks to months after birth, depending on the species. Together, these studies point out the importance of considering the genetic variability of PON1192 isoforms and levels as well as the developmental time course of PON1 appearance in serum in developing risk assessment models  相似文献   

17.
Many studies have examined the associations between paraoxonase‐1 (PON1) genetic polymorphisms (Q192R, rs662 and L55M, rs854560) and the susceptibility to type 2 diabetes mellitus (T2DM) across different ethnic populations. However, the evidence for the associations remains inconclusive. In this study, we performed a meta‐analysis to clarify the association of the two PON1 variants with T2DM risk. We carried out a systematic search of PubMed, Embase, CNKI and Wanfang databases for studies published before June 2017. The pooled odds ratios (ORs) for the association and their corresponding 95% confidence intervals (CIs) were calculated by a random‐ or fixed‐effect model. A total of 50 eligible studies, including 34 and 16 studies were identified for the PON1 Q192R (rs662) and L55M (rs854560) polymorphism, respectively. As for the PON1 Q192R polymorphism, the 192R allele was a susceptible factor of T2DM in the South or East Asian population (OR > 1, P < 0.05) but represented a protective factor of T2DM in European population (OR = 0.66, 95% CI = 0.45–0.98) under a heterozygous genetic model. With regard to the PON1 L55M polymorphism, significant protective effects of the 55M allele on T2DM under the heterozygous (OR = 0.77, 95% CI = 0.61–0.97) and dominant (OR = 0.80, 95% CI = 0.65–0.99) genetic models were found in the European population, while no significant associations in the Asian populations under all genetic models (P > 0.05). In summary, by a comprehensive meta‐analysis, our results firmly indicated that distinct effects of PON1 genetic polymorphisms existed in the risk of T2DM across different ethnic backgrounds.  相似文献   

18.
Serum paraoxonase (PON1) is a HDL-associated enzyme exhibiting potentially antiatherogenic properties. Here, we examined the common PON1-192R/Q human polymorphism. Despite numerous studies, the effect of this polymorphism on the antiatherogenic potential of PON1 is yet unresolved. Our structural model suggests that amino acid 192 constitutes part of the HDL-anchoring surface and active site of PON1. Based on our findings that PON1 is an interfacially activated lipolactonase that selectively binds HDL carrying apolipoprotein A-I (apoA-I) and is thereby greatly stabilized and catalytically activated, we examined the interaction of the PON1-192 isozymes with reconstituted HDL-apoA-I particles. We found that PON1 position 192 is indeed involved in HDL binding. The PON1-192Q binds HDL with a 3-fold lower affinity than the R isozyme and consequently exhibits significantly reduced stability, lipolactonase activity, and macrophage cholesterol efflux. We also observed the lower affinity and stability of the 192Q versus the 192R isozyme in sera of individuals belonging to the corresponding genotypes. The observed differences in the properties of PON1-192R/Q isozymes provide a basis for further analysis of the contribution of the 192R/Q polymorphism to the susceptibility to atherosclerosis, although other factors, such as the overall levels of PON1, may play a more significant role.  相似文献   

19.
Background: Acromegalic patients have increased cardiometabolic risk factors due to an elevation of growth hormone (GH) levels. Human serum paraoxonase (PON), a high-density lipoprotein (HDL)-related enzyme, is one of the major bioscavengers and decreases the oxidation of low-density lipoprotein (LDL), a key regulator in the pathogenesis of atherosclerosis. In this study, we investigated a potential relationship between serum PON levels or PON polymorphisms and acromegaly.

Methods: A total of 48 acromegalic patients and 44 healthy controls were included in this study. Serum GH levels, insulin-like growth factor-1 levels and lipid profiles were measured. Serum PON levels, as well as PON 1 L55M and Q192R gene polymorphisms, were examined.

Results: No significant differences were found in terms of age, gender, presence of diabetes, serum LDL cholesterol (LDL-C), HDL-C, or triglyceride levels between the case and control groups (P?>?0.05). A statistically significant difference was found in serum PON levels between the cases and controls (P?=?0.007). The median serum PON level was 101?±?63.36?U/l in the case group and 63?±?60.50?U/l in the control group. There was a significant correlation between serum PON levels and IGF-1 levels (P?=?0.004, r?=?0.319); however, no significant differences were found in PON1 L55M and PON Q192R polymorphisms between the patients and controls (P?=?0.607 and P?=?0.308, respectively). In addition, no significant differences were found in serum PON levels in acromegalic patients who were and were not in remission (P?=?0.385), nor between those with PON1 L55M and Q192R polymorphisms (P?=?0.161 and P?=?0.336, respectively).

Conclusions: Elevated serum PON levels were detected in acromegalic patients, independently of their remission status. This suggests protective effects for cardiometabolic risk parameters.  相似文献   

20.
To study the molecular genetic basis of human aging and longevity, the allele and genotype frequencies of the 192Q/R polymorphism of PON1 were compared for ethnic Tatars of the younger (1–20 years), middle (21–55 years), elderly (56–74 years), senile (75–89 years), and long-lived (90–109 years) age groups (in total, 1116 people). The PON1 alleles were identified using PCR and restriction enzyme analysis. In the total samples, the frequencies of genotypes Q/Q, Q/R, and R/R were 46.15, 44.35, and 9.5%, respectively, and the frequencies of alleles Q and R were 68.32 and 31.68%, respectively. Some age groups significantly differed from each other in allele and genotype frequencies. The frequency of allele R in the senile group (28.46%) was significantly lower than in the younger group (37.42%, P = 0.009). However, the long-lived displayed significantly higher frequencies of allele R (P = 0.005) and genotype R/R (P = 0.01) as compared with the senile group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号