首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.  相似文献   

2.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

3.
During aerobic respiration, microorganisms consume oxygen (O2) through the use of different types of terminal oxidases which have a wide range of affinities for O2. The Km values for O2 of these enzymes have been determined to be in the range of 3 to 200 nmol liter−1. In this study, we examined the time course of development of aerobic respiratory kinetics of four marine bacterial species (Dinoroseobacter shibae, Roseobacter denitrificans, Idiomarina loihiensis, and Marinobacter daepoensis) during exposure to decreasing O2 concentrations. The genomes of all four species have genes for both high-affinity and low-affinity terminal oxidases. The respiration rate of the bacteria was measured by the use of extremely sensitive optical trace O2 sensors (range, 1 to 1,000 nmol liter−1). Three of the four isolates exhibited apparent Km values of 30 to 60 nmol liter−1 when exposed to submicromolar O2 concentrations, but a decrease to values below 10 nmol liter−1 was observed when the respiration rate per cell was lowered and the cell size was decreased due to starvation. The fourth isolate did not reach a low respiration rate per cell during starvation and exhibited apparent Km values of about 20 nmol liter−1 throughout the experiment. The results clearly demonstrate not only that enzyme kinetics may limit O2 uptake but also that even individual cells may be diffusion limited and that this diffusion limitation is the most pronounced at high respiration rates. A decrease in cell size by starvation, due to limiting organic carbon, and thereby more efficient diffusion uptake may also contribute to lower apparent Km values.  相似文献   

4.
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.  相似文献   

5.
Vibrio cholerae respires both aerobically and anaerobically and, while oxygen may be available to it during infection, other terminal electron acceptors are proposed for population expansion during infection. Unlike gastrointestinal pathogens that stimulate significant inflammation leading to elevated levels of oxygen or alternative terminal electron acceptors, V. cholerae infections are not understood to induce a notable inflammatory response. To ascertain the respiration requirements of V. cholerae during infection, we used Multiplex Genome Editing by Natural Transformation (MuGENT) to create V. cholerae strains lacking aerobic or anaerobic respiration. V. cholerae strains lacking aerobic respiration were attenuated in infant mice 105-fold relative to wild type, while strains lacking anaerobic respiration had no colonization defect, contrary to earlier work suggesting a role for anaerobic respiration during infection. Using several approaches, including one we developed for this work termed Comparative Multiplex PCR Amplicon Sequencing (CoMPAS), we determined that the bd-I and cbb3 oxidases are essential for small intestinal colonization of V. cholerae in the infant mouse. The bd-I oxidase was also determined as the primary oxidase during growth outside the host, making V. cholerae the only example of a Gram-negative bacterial pathogen in which a bd-type oxidase is the primary oxidase for energy acquisition inside and outside of a host.  相似文献   

6.
Bacteria can not only encounter carbon monoxide (CO) in their habitats but also produce the gas endogenously. Bacterial respiratory oxidases, thus, represent possible targets for CO. Accordingly, host macrophages were proposed to produce CO and release it into the surrounding microenvironment to sense viable bacteria through a mechanism that in Escherichia (E.) coli was suggested to involve the targeting of a bd-type respiratory oxidase by CO. The aerobic respiratory chain of E. coli possesses three terminal quinol:O2-oxidoreductases: the heme-copper oxidase bo3 and two copper-lacking bd-type oxidases, bd-I and bd-II. Heme-copper and bd-type oxidases differ in the mechanism and efficiency of proton motive force generation and in resistance to oxidative and nitrosative stress, cyanide and hydrogen sulfide. Here, we investigated at varied O2 concentrations the effect of CO gas on the O2 reductase activity of the purified cytochromes bo3, bd-I and bd-II of E. coli. We found that CO, in competition with O2, reversibly inhibits the three enzymes. The inhibition constants Ki for the bo3, bd-I and bd-II oxidases are 2.4 ± 0.3, 0.04 ± 0.01 and 0.2 ± 0.1 μM CO, respectively. Thus, in E. coli, bd-type oxidases are more sensitive to CO inhibition than the heme-copper cytochrome bo3. The possible physiological consequences of this finding are discussed.  相似文献   

7.
Heme–copper oxidases (HCuOs) are the terminal components of the respiratory chain in the mitochondrial membrane or the cell membrane in many bacteria. These enzymes reduce oxygen to water and use the free energy from this reaction to maintain a proton-motive force across the membrane in which they are embedded. The heme–copper oxidases of the cbb3-type are only found in bacteria, often pathogenic ones since they have a low Km for O2, enabling the bacteria to colonize semi-anoxic environments. Cbb3-type (C) oxidases are highly divergent from the mitochondrial-like aa3-type (A) oxidases, and within the heme–copper oxidase family, cbb3 is the closest relative to the most divergent member, the bacterial nitric oxide reductase (NOR). Nitric oxide reductases reduce NO to N2O without coupling the reaction to the generation of any electrochemical proton gradient. The significant structural differences between A- and C-type heme–copper oxidases are manifested in the lack in cbb3 of most of the amino acids found to be important for proton pumping in the A-type, as well as in the different binding characteristics of ligands such as CO, O2 and NO. Investigations of the reasons for these differences at a molecular level have provided insights into the mechanism of O2 and NO reduction as well as the proton-pumping mechanism in all heme–copper oxidases. In this paper, we discuss results from these studies with the focus on the relationship between proton transfer and ligand binding and reduction. In addition, we present new data, which show that CO binding to one of the c-type hemes of CcoP is modulated by protein–lipid interactions in the membrane. These results show that the heme c-CO binding can be used as a probe of protein–membrane interactions in cbb3 oxidases, and possible physiological consequences for this behavior are discussed.  相似文献   

8.
Spectral analysis indicated the presence of a cytochrome cbb3 oxidase under microaerobic conditions in Azospirillum brasilense Sp7 cells. The corresponding genes (cytNOQP) were isolated by using PCR. These genes are organized in an operon, preceded by a putative anaerobox. The phenotype of an A. brasilense cytN mutant was analyzed. Under aerobic conditions, the specific growth rate during exponential phase (μe) of the A. brasilense cytN mutant was comparable to the wild-type specific growth rate (μe of approximately 0.2 h−1). In microaerobic NH4+-supplemented conditions, the low respiration of the A. brasilense cytN mutant affected its specific growth rate (μe of approximately 0.02 h−1) compared to the wild-type specific growth rate (μe of approximately 0.2 h−1). Under nitrogen-fixing conditions, both the growth rates and respiration of the wild type were significantly diminished in comparison to those under NH4+-supplemented conditions. Differences in growth rates and respiration between the wild type and the A. brasilense cytN mutant were less pronounced under these nitrogen-fixing conditions (μe of approximately 0.03 h−1 for the wild type and 0.02 h−1 for the A. brasilense cytN mutant). The nitrogen-fixing capacity of the A. brasilense cytN mutant was still approximately 80% of that determined for the wild-type strain. This leads to the conclusion that the A. brasilense cytochrome cbb3 oxidase is required under microaerobic conditions, when a high respiration rate is needed, but that under nitrogen-fixing conditions the respiration rate does not seem to be a growth-limiting factor.  相似文献   

9.
The cbb3-type cytochrome c oxidases (cbb3-CcOs) are members of the heme-copper oxidase superfamily that couple the reduction of oxygen to translocation of protons across the membrane. The cbb3-CcOs are present only in bacteria and play a primary role in microaerobic respiration, being essential for nitrogen-fixing endosymbionts and for some human pathogens. As frequently observed in Pseudomonads, Pseudomonas stutzeri contains two independent ccoNO(Q)P operons encoding the two cbb3 isoforms, Cbb3-1 and Cbb3-2. While the crystal structure of Cbb3-1 from P. stutzeri was determined recently and cbb3-CcOs from other organisms were characterized functionally, less emphasis has been placed on the isoform-specific differences between the cbb3-CcOs. In this work, both isoforms were homologously expressed in P. stutzeri strains from which the genomic version of the respective operon was deleted. We purified both cbb3 isoforms separately by affinity chromatography and increased the yield of Cbb3-2 to a similar level as Cbb3-1 by replacing its native promoter. Mass spectrometry, UV-visible (UV-Vis) spectroscopy, differential scanning calorimetry, as well as oxygen reductase and catalase activity measurements were employed to characterize both cbb3 isoforms. Differences were found concerning the thermal stability and the presence of subunit CcoQ. However, no significant differences between the two isoforms were observed otherwise. Interestingly, a surprisingly high turnover of at least 2,000 electrons s−1 and a high Michaelis-Menten constant (Km ∼ 3.6 mM) using ascorbate–N,N,N′,N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) as the electron donor were characteristic for both P. stutzeri cbb3-CcOs. Our work provides the basis for further mutagenesis studies of each of the two cbb3 isoforms specifically.  相似文献   

10.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

11.
The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo3-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb3-type cytochrome c oxidases (cbb3-1 and cbb3-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb3-1 and cbb3-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb3-1 and cbb3-2 are high-affinity enzymes. Although cbb3-1 and cbb3-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb3-1 and cbb3-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb3-1 and cbb3-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.  相似文献   

12.
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions.  相似文献   

13.
Inhibition of terminal oxidases by nitric oxide (NO) has been extensively investigated as it plays a role in regulation of cellular respiration and pathophysiology. Cytochrome bd is a tri-heme (b558, b595, d) bacterial oxidase containing no copper that couples electron transfer from quinol to O2 (to produce H2O) with generation of a transmembrane protonmotive force. In this work, we investigated by stopped-flow absorption spectroscopy the reaction of NO with Escherichia coli cytochrome bd in the fully oxidized (O) state. We show that under anaerobic conditions, the O state of the enzyme binds NO at heme d with second-order rate constant kon = 1.5 ± 0.2 × 102 M−1 s−1, yielding a nitrosyl adduct (d3+–NO or d2+–NO+) with characteristic optical features (an absorption increase at 639 nm and a red shift of the Soret band). The reaction mechanism is remarkably different from that of O cytochrome c oxidase in which the heme–copper binuclear center reacts with NO approximately three orders of magnitude faster, forming nitrite. The data allow us to conclude that in the reaction of NO with terminal oxidases in the O state, CuB is indispensable for rapid oxidation of NO into nitrite.  相似文献   

14.
The facultative phototrophic bacterium Rhodobacter capsulatus contains only one form of cytochrome (cyt) c oxidase, which has recently been identified as a cbb3-type cyt c oxidase. This is unlike other related species, such as Rhodobacter sphaeroides and Paracoccus denitrificans, which contain an additional mitochondrial-like aa3-type cyt c oxidase. An extensive search for mutants affected in cyt c oxidase activity in R. capsulatus led to the isolation of at least five classes of mutants. Plasmids complementing them to a wild-type phenotype were obtained for all but one of these classes from a chromosomal DNA library. The first class of mutants contained mutations within the structural genes (ccoNOQP) of the cyt cbb3 oxidase. Sequence analysis of these mutants and of the plasmids complementing them revealed that ccoNOQP in R. capsulatus is not flanked by the oxygen response regulator fnr, which is located upstream of these genes in other species. Genetic and biochemical characterizations of mutants belonging to this group indicated that the subunits CcoN, CcoO, and CcoP are required for the presence of an active cyt cbb3 oxidase, and unlike in Bradyrhizobium japonicum, no active CcoN-CcoO subcomplex was found in R. capsulatus. In addition, mutagenesis experiments indicated that the highly conserved open reading frame 277 located adjacent to ccoNOQP is required neither for cyt cbb3 oxidase activity or assembly nor for respiratory or photosynthetic energy transduction in R. capsulatus. The remaining cyt c oxidase-minus mutants mapped outside of ccoNOQP and formed four additional groups. In one of these groups, a fully assembled but inactive cyt cbb3 oxidase was found, while another group had only extremely small amounts of it. The next group was characterized by a pleiotropic effect on all membrane-bound c-type cytochromes, and the remaining mutants not complemented by the plasmids complementing the first four groups formed at least one additional group affecting the biogenesis of the cyt cbb3 oxidase of R. capsulatus.The gram-negative facultative photosynthetic bacterium Rhodobacter capsulatus has a highly branched electron transport chain, resulting in its ability to grow under a wide variety of conditions (52). Its light-driven photosynthetic electron transfer pathway is a cyclic process between the photochemical reaction center and the ubihydroquinone cytochrome (cyt) c oxidoreductase (cyt bc1 complex) (30). On the other hand, the respiratory electron transfer pathways of R. capsulatus are branched after the quinone pool and contain two different terminal oxidases, previously called cyt b410 (cyt c oxidase) and cyt b260 (quinol oxidase) (3, 27, 29, 53). The branch involving cyt c oxidase is similar to the mitochondrial electron transfer chain in that it depends on the cyt bc1 complex and a c-type cyt acting as an electron carrier. The quinol oxidase branch circumvents the cyt bc1 complex and the cyt c oxidase by taking electrons directly from the quinone pool to reduce O2 to H2O. The pronounced metabolic versatility, including the ability to grow under dark, anaerobic conditions (50, 52), makes these purple non-sulfur bacteria excellent model organisms for studying microbial energy transduction.Marrs and Gest (29) have reported the first R. capsulatus mutants which were defective in the respiratory electron transport chain. Of these mutants, M5 was incapable of catalyzing the α-naphthol plus N′,N′-dimethyl-p-phenylenediamine (DMPD) plus O2→indophenol blue plus H2O reaction (NADI reaction) and unable to grow by respiration (Res), and hence was deficient in both terminal oxidases. Another mutant, M4, was also NADI but Res+ due to the presence of an active quinol oxidase. Marrs and Gest have also described two different spontaneous revertants of M5, called M6 and M7, which regained the ability to grow by respiration (29). M6 regained cyt c oxidase activity and became concurrently NADI+ and sensitive to low concentrations of cyanide and the cyt bc1 inhibitor myxothiazol, but remained quinol oxidase. On the other hand, M7 regained the quinol oxidase activity but remained cyt c oxidase (thus, NADI and resistant to myxothiazol, a phenotype identical to that of M4). All of these mutants remained proficient for phototrophic (Ps) growth.The cyt c oxidase of R. capsulatus has been purified previously and characterized as being a novel cbb3-type cyt c oxidase without a CuA center (15). It is composed of at least a membrane-integral b-type cyt (subunit I [CcoN]) with a low-spin heme b and a high-spin heme b3-CuB binuclear center, and two membrane-anchored c-type cyts (CcoO and CcoP). It has a unique active site that possibly confers a very high affinity for its substrate oxygen (49). The structural genes of this enzyme (ccoNOQP) have been sequenced recently from R. capsulatus 37b4 (45) and aligned to the partial amino acid sequence of the purified enzyme from R. capsulatus MT1131 (15). Although a ccoN mutant of strain 37b4 was reported to lack cyt c oxidase activity (45), the observed discrepancies between the amino acid sequence and the nucleotide sequence do not entirely exclude the possible presence of two similar cb-type cyt c oxidases in this species. The presence of a similar cyt c oxidase has also been demonstrated in several other bacteria, including P. denitrificans (9), R. sphaeroides (13), and Rhizobium spp. In the latter species, the homologs of ccoNOQP have been named fixNOQP (23, 34) and are required to support respiration under oxygen-limited growth during symbiotic nitrogen fixation (36).The biogenesis of a multisubunit protein complex containing several prosthetic groups, such as cyt cbb3 oxidase, is likely to require many accessory proteins involved in various posttranslational events, including protein translocation, assembly, cofactor insertion, and maturation (46). Thus, insights into this important biological process, about which currently little is known, may be gained by searching for mutants defective in cyt c oxidase activity. In this work, we describe the isolation of such mutants and their molecular genetic characterization, including those already available, such as M4, M5, and M7G. These studies indicate that in R. capsulatus, gene products of at least five different loci are involved in the formation of an active cyt cbb3 oxidase.  相似文献   

15.
16.
Benthic cyanobacterial mats with the filamentous Microcoleus chthonoplastes as the dominant phototroph grow in oxic hypersaline environments such as Solar Lake, Sinai. The cyanobacteria are in situ exposed to chemical variations between 200 μmol of sulfide liter−1 at night and 1 atm pO2 during the day. During experimental H2S to O2 transitions the microbial community was shown to shift from anoxygenic photosynthesis, with H2S as the electron donor, to oxygenic photosynthesis. Microcoleus filaments could carry out both types of photosynthesis concurrently. Anoxygenic photosynthesis dominated at high sulfide levels, 500 μmol liter−1, while the oxygenic reaction became dominant when the sulfide level was reduced below 100 to 300 μmol liter−1 (25 to 75 μmol of H2S liter−1). An increasing inhibition of the oxygenic photosynthesis was observed upon transition to oxic conditions from increasing sulfide concentrations. Oxygen built up within the Microcoleus layer of the mat even under 5 mmol of sulfide liter−1 (500 μmol of H2S liter−1) in the overlying water. The implications of such a localized O2 production in a highly reducing environment are discussed in relation to the evolution of oxygenic photosynthesis during the Proterozoic era.  相似文献   

17.
The changes occurring in the respiratory enzymes of anaerobically grown Escherichia coli strain B and E. coli 15 TAUbar during exposure to oxygen were studied. Reduced nicotinamide adenine dinucleotide (NADH) oxidase activity reached its peak soon after O2 exposure; cytochrome content and succinate oxidase activity increased more slowly, and these increases paralleled each other. The activities of isocitrate and malate dehydrogenases also increased, but the increase was less than that of the succinate and NADH oxidases; exposure to O2 had no effect on the succinate and NADH dehydrogenase activities. On the other hand, the glycolytic activity decreased slowly after O2 exposure. The incorporation of 32P into acid-soluble organic phosphate esters paralleled the respiratory rate during the first 60 min after O2 exposure, but continued to increase after the respiration reached a plateau. The sensitivity of 32P incorporation to the uncoupler carbonyl cyanide m-chlorophenylhydrazone also increased with time. The observed relationship between the development of the respiratory chain and the energy-conserving mechanism during O2 exposure is discussed. Synthesis of the respiratory enzymes upon exposure to oxygen was dependent on concomitant protein and ribonucleic acid synthesis but not on deoxyribonucleic acid synthesis.  相似文献   

18.
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.  相似文献   

19.
Vivek Sharma  Ville R.I. Kaila 《BBA》2010,1797(8):1512-21475
Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.  相似文献   

20.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号