首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

2.
MSL complexes bind hundreds of sites along the single male X chromosome to achieve dosage compensation in Drosophila. Previously, we proposed that approximately 35 "high-affinity" or "chromatin entry" sites (CES) might nucleate spreading of MSL complexes in cis to paint the X chromosome. This was based on analysis of the first characterized sites roX1 and roX2. roX transgenes attract MSL complex to autosomal locations where it can spread long distances into flanking chromatin. roX1 and roX2 also produce noncoding RNA components of the complex. Here we identify a third site from the 18D10 region of the X chromosome. Like roX genes, 18D binds full and partial MSL complexes in vivo and encompasses a male-specific DNase I hypersensitive site (DHS). Unlike roX genes, the 510 bp 18D site is apparently not transcribed and shows high affinity for MSL complex and spreading only as a multimer. While mapping 18D, we discovered MSL binding to X cosmids that do not carry one of the approximately 35 high-affinity sites. Based on additional analyses of chromosomal transpositions, we conclude that spreading in cis from the roX genes or the approximately 35 originally proposed "entry sites" cannot be the sole mechanism for MSL targeting to the X chromosome.  相似文献   

3.
4.
5.
The equal distribution of chromosomes during mitosis is critical for maintaining the integrity of the genome. Essential to this process are the capture of spindle microtubules by kinetochores and the congression of chromosomes to the metaphase plate . Polo-like kinase 1 (Plk1) is a mitotic kinase that has been implicated in microtubule-kinetochore attachment, tension generation at kinetochores, tension-responsive signal transduction, and chromosome congression . The tension-sensitive substrates of Plk1 at the kinetochore are unknown. Here, we demonstrate that human Nuclear distribution protein C (NudC), a 42 kDa protein initially identified in Aspergillus nidulans and shown to be phosphorylated by Plk1 , plays a significant role in regulating kinetochore function. Plk1-phosphorylated NudC colocalizes with Plk1 at the outer plate of the kinetochore. Depletion of NudC reduced end-on microtubule attachments at kinetochores and resulted in defects in chromosome congression at the metaphase plate. Importantly, NudC-deficient cells exhibited mislocalization of Plk1 and the Kinesin-7 motor CENP-E from prometaphase kinetochores. Ectopic expression of wild-type NudC, but not NudC containing mutations in the Plk1 phosphorylation sites, recovered Plk1 localization at the kinetochore and rescued chromosome congression. Thus, NudC functions as both a substrate and a spatial regulator of Plk1 at the kinetochore to promote chromosome congression.  相似文献   

6.
The APETALA2 domain is related to a novel type of DNA binding domain.   总被引:20,自引:4,他引:20       下载免费PDF全文
D Weigel 《The Plant cell》1995,7(4):388-389
  相似文献   

7.
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.  相似文献   

8.
9.
10.
11.
Reverse gyrase is the only topoisomerase that can introduce positive supercoils into DNA in an ATP-dependent process. It has a modular structure and harnesses a helicase-like domain to support a topoisomerase activity, thereby creating the unique function of positive DNA supercoiling. The isolated topoisomerase domain can relax negatively supercoiled DNA, an activity that is suppressed in reverse gyrase. The isolated helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain. Inter-domain communication thus appears central for the functional cooperation of the two domains. The latch, an insertion into the helicase-like domain, has been suggested as an important element in coordinating their activities. Here, we have dissected the influence of the latch on nucleotide and DNA binding to the helicase-like domain, and on DNA supercoiling by reverse gyrase. We find that the latch is required for positive DNA supercoiling. It is crucial for the cooperativity of DNA and nucleotide binding to the helicase-like domain. The latch contributes to DNA binding, and affects the preference of reverse gyrase for ssDNA. Thus, the latch coordinates the individual domain activities by modulating the helicase-like domain, and by communicating changes in the nucleotide state to the topoisomerase domain.  相似文献   

12.
Dear Editor, Sex determination is one of the most fundamental develop-ment processes,as gender is the first and most important identity of human.In most mammals...  相似文献   

13.
Human lactoferrin (hLf) has been shown to interact with cells from the Caco-2 human small intestinal cell line. There currently is little information about the molecular details of its interaction. As a first step toward detailed characterization of this interaction, we used a series of Lf chimeras to analyze which part of Lf is responsible for the interaction with Caco-2 cells. Recombinant chimeric proteins consisting of segments of hLf and bovine transferrin (bTf) were produced in a baculovirus-insect cell system and purified by a combination of cation exchange chromatography and immobilized bTf antibody affinity chromatography. Each chimera was labeled with a green fluorescent dye to monitor its interaction with Caco-2 cells. Similarly, the intestinal Lf receptor (LfR), also known as intelectin, was probed with an anti-LfR antibody that was detected with a secondary antibody conjugated with a red-color fluorescent dye. The results demonstrated that chimeric proteins containing the N-lobe or the N1.1 subdomain of Lf bound as well as intact Lf to Caco-2 cells. Confocal microscopy analysis revealed that these proteins, along with the LfR, were internalized and targeted to the nucleus. These results indicate that the N1.1 subdomain of hLf is sufficient for binding, internalization, and targeting to the nucleus of Caco-2 cells.  相似文献   

14.
Estrogen receptor alpha (ER) is a member of the nuclear hormone receptor family, which upon binding estrogen shows increased apparent affinity for nuclear components (tight nuclear binding). The nuclear components that mediate this tight nuclear binding have been proposed to include both ER-DNA interactions and ER-protein interactions. In this paper, we demonstrate that tight nuclear binding of ER upon estrogen occupation requires ER-DNA interactions. Hormone-bound ER can be extracted from the nucleus in low-salt buffer using various polyanions, which mimic the phosphate backbone of DNA. The importance of specific ER-DNA interactions in mediating tight nuclear binding is also supported by the 380-fold lower concentration of the ERE oligonucleotide necessary to extract estrogen-occupied ER from the nucleus compared to the polyanions. We also demonstrate that estrogen-induced tight nuclear binding requires both the nuclear localization domain and the DNA binding domain of ER. Finally, enzymatic degradation of nuclear DNA allows us to recover 45% of tight nuclear-bound ER. We further demonstrate that ER-AIB1 interaction is not required for estrogen-induced tight nuclear binding. Taken together, we propose a model in which tight nuclear binding of the estrogen-occupied ER is predominantly mediated by ER-DNA interactions. The effects of estrogen binding on altering DNA binding in whole cells are proposed to occur through estrogen-induced changes in ER-chaperone protein interactions, which alter the DNA accessibility of ER but do not directly change the affinity of the ER for DNA, which is similar for both unoccupied and occupied ER.  相似文献   

15.
Chromosome dimers, formed by homologous recombination between sister chromosomes, normally require cell division to be resolved into monomers by site-specific recombination at the dif locus of Escherichia coli. We report here that it is not in fact cell division per se that is required for dimer resolution but the action of the cytoplasmic domain of FtsK, which is a bifunctional protein required both for cell division and for chromosome partition.  相似文献   

16.
He W  Gong K  Smith DK  Ip NY 《FEBS letters》2005,579(20):4317-4323
Ciliary neurotrophic factor (CNTF) forms a functional receptor complex containing the CNTF receptor, gp130, and the leukemia inhibitory factor receptor (LIFR). However, the nature and stoichiometry of the receptor-mediated interactions in this complex have not yet been fully resolved. We show here that signaling by CNTF, but not by LIF or oncostatin M (OSM), was abolished in cells overexpressing a LIFR mutant with the N-terminal cytokine binding domain deleted. Our results illustrate molecular differences between the CNTF active receptor complex and those of LIF and OSM and provide further support for the hexameric model of the CNTF receptor complex.  相似文献   

17.
Dosage compensation in male Drosophila relies on the X chromosome–specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called “high-affinity sites” (HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features.  相似文献   

18.
19.
The HNH motif was originally identified in the subfamily of HNH homing endonucleases, which initiate the process of the insertion of mobile genetic elements into specific sites. Several bacteria toxins, including colicin E7 (ColE7), also contain the 30 amino acid HNH motif in their nuclease domains. In this work, we found that the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contains a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzes DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from nuclease-ColE7, had no DNase activity. Several divalent metal ions, including Ni2+, Mg2+, Co2+, Mn2+, Ca2+, Sr2+, Cu2+ and Zn2+, re-activated the DNase activity of the apo-enzyme to various degrees, however higher concentrations of zinc ion inhibited this DNase activity. Two charged residues located at positions close to the zinc-binding site were mutated to alanine. The single-site mutants, R538A and E542A, showed reduced DNase activity, whereas the double-point mutant, R538A + E542A, had no observable DNase activity. A gel retardation assay further demonstrated that the nuclease-ColE7 hydrolyzed DNA in the presence of zinc ions, but only bound to DNA in the absence of zinc ions. These results demonstrate that the zinc ion in the HNH motif of nuclease-ColE7 is not required for DNA binding, but is essential for DNA hydrolysis, suggesting that the zinc ion not only stabilizes the folding of the enzyme, but is also likely to be involved in DNA hydrolysis.  相似文献   

20.
Chan KL  North PS  Hickson ID 《The EMBO journal》2007,26(14):3397-3409
Mutations in BLM cause Bloom's syndrome, a disorder associated with cancer predisposition and chromosomal instability. We investigated whether BLM plays a role in ensuring the faithful chromosome segregation in human cells. We show that BLM-defective cells display a higher frequency of anaphase bridges and lagging chromatin than do isogenic corrected derivatives that eptopically express the BLM protein. In normal cells undergoing mitosis, BLM protein localizes to anaphase bridges, where it colocalizes with its cellular partners, topoisomerase IIIalpha and hRMI1 (BLAP75). Using BLM staining as a marker, we have identified a class of ultrafine DNA bridges in anaphase that are surprisingly prevalent in the anaphase population of normal human cells. These so-called BLM-DNA bridges, which also stain for the PICH protein, frequently link centromeric loci, and are present at an elevated frequency in cells lacking BLM. On the basis of these results, we propose that sister-chromatid disjunction is often incomplete in human cells even after the onset of anaphase. We present a model for the action of BLM in ensuring complete sister chromatid decatenation in anaphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号