首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cdr2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd2+ compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd2+-resistant Cdr2C10 subline to induce synthesis of the Cd2+- and Zn2+-binding protein(s), metallothionein(s) (MT). Evidence that Cd2+ behaves as an analog of the essential trace metal, Zn2+, especially as an inducer of MT synthesis, suggested that the Cdr and CHO cell types could be employed to investigate cellular Zn2+ metabolism. In the present study, measurements were made to compare CHO and Cdr cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn2+, and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cdr cell types grew normally (T d≊16–18 h) during exposures to Zn2+ at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn2+ levels, (b) Cdr cells incorporate fourfold more Zn2+ during a 24-h exposure to the maximal subtoxic level of Zn2+ and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cdr cell is proficient in this response during exposure to the maximal subtoxic Zn2+ level. These findings suggest that (a) the CHO and Cdr cell systems will be useful in further studies of cellular Zn2+ metabolism, especially in comparisons of Zn2+ metabolism in the presence and absence of induction of the Zn2+-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn2+ uptake.  相似文献   

3.
Zinc transporter 8 (ZnT8) is mainly expressed in pancreatic islet β cells and is responsible for H+-coupled uptake (antiport) of Zn2+ into the lumen of insulin secretory granules. Structures of human ZnT8 and its prokaryotic homolog YiiP have provided structural basis for constructing a plausible transport cycle for Zn2+. However, the mechanistic role that protons play in the transport process remains unclear. Here we present a lumen-facing cryo-EM structure of ZnT8 from Xenopus tropicalis (xtZnT8) in the presence of Zn2+ at a luminal pH (5.5). Compared to a Zn2+-bound xtZnT8 structure at a cytosolic pH (7.5), the low-pH structure displays an empty transmembrane Zn2+-binding site with a disrupted coordination geometry. Combined with a Zn2+-binding assay our data suggest that protons may disrupt Zn2+ coordination at the transmembrane Zn2+-binding site in the lumen-facing state, thus facilitating Zn2+ release from ZnT8 into the lumen.  相似文献   

4.
Zn2+ exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn2+-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn2+-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn2+-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn2+-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn2+-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn2+ was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn2+ and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn2+-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR β-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn2+-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.  相似文献   

5.
Zinc (Zn2+) has been recently recognized as a crucial element for male gamete function in many species although its detailed mechanism of action is poorly understood. In sea urchin spermatozoa, Zn2+ was reported as an essential trace ion for efficient sperm motility initiation and the acrosome reaction by modulating intracellular pH (pHi). In this study we found that submicromolar concentrations of free Zn2+ change membrane potential (Em) and increase the concentration of intracellular Ca2+ ([Ca2+]i) and cAMP in Lytechinus pictus sperm. Our results indicate that the Zn2+ response in sperm of this species mainly involves an Em hyperpolarization caused by K+ channel activation. The pharmacological profile of the Zn2+-induced hyperpolarization indicates that the cGMP-gated K+ selective channel (tetraKCNG/CNGK), which is crucial for speract signaling, is likely a main target for Zn2+. Considering that Zn2+ also induces [Ca2+]i fluctuations, our observations suggest that Zn2+ activates the signaling cascade of speract, except for an increase in cGMP, and facilitates sperm motility initiation upon spawning. These findings provide new insights about the role of Zn2+ in male gamete function.  相似文献   

6.
Excessive “excitotoxic” accumulation of Ca2+ and Zn2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca2+ or Zn2+ loading. Induction of rapid cytosolic accumulation of either Ca2+ (via NMDA exposure) or Zn2+ (via Zn2+/Pyrithione exposure in 0 Ca2+) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca2+-induced ROS production with little effect on the Zn2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca2+ or Zn2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn2+-triggered ROS, while partially attenuating the Ca2+-triggered ROS. Furthermore, block of the mitochondrial Ca2+ uniporter (MCU), through which Zn2+ as well as Ca2+ can enter the mitochondrial matrix, substantially diminished Zn2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2''-dithiodipyridine, which impairs Zn2+ binding to cytosolic metalloproteins, far lower Zn2+ exposures were able to induce mitochondrial Zn2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn2+ and Ca2+ each can trigger injurious ROS generation, Zn2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn2+ buffering is impaired due to acidosis and oxidative stress.  相似文献   

7.
The goal of this study was to evaluate the effect of chronic Zn2+ administration (1 mg/kg/day for 1 month) in Sprague-Dawley rats (n=11) on motility and rearing behaviors (number of events/10 min measured in motility cage), on memory (percentage of failures using a footshock double T maze), on the number of muscarinic receptors (using [3H]-QNB as a marker) and on the cholinacetyltransferase (Chat) activity (determined by Fonnun's method) in various brain areas (striatum, hippocampus and frontal cortex), as compared with saline-treated rats (n=10). Our results showed that Zn2+ induced a decrease in rearing (control: 24.6±3; Zn2+: 15.91±2.19) and in locomotor activity (control: 37±3.79; Zn2+: 25±4.37), a decrease in failures during memory trials (control: 26.12±5.6; Zn2+: 5.33±2.71) and an increase in muscarinic receptor density (fmol/mg) in the striatum (control: 539±6.18; Zn2+: 720±14.69), hippocampus (control: 396±7.41; Zn2+: 458±5.05) and frontal cortex (control: 506±10.28; Zn2+: 716±16.54). Chat activity (pmol/mg/min) was decreased only in the striatum (control: 4,240±158; Zn2+: 2,311±69). We conclude that Zn2+ induces a cholinergic functional supersensitivity which is related to receptor upregulation.  相似文献   

8.
Much less attention has been paid to Zn2+ in artificial cerebrospinal fluid (ACSF), i.e., extracellular medium, used for in vitro slice experiments than divalent cations such as Ca2+. Approximately 2 mM Ca2+ is added to conventional ACSF from essentiality of Ca2+ signaling in neurons and glial cells. However, no Zn2+ is added to it, even though the importance of Zn2+ signaling in them is recognizing. On the other hand, synaptic Zn2+ homeostasis is changed during brain slice preparation. Therefore, it is possible that not only neuronal excitation but also synaptic plasticity such as long-term potentiation is modified in ACSF without Zn2+, in which original physiology might not appear. The basal (static) levels of intracellular (cytosolic) Zn2+ and Ca2+ are not significantly different between brain slices prepared with conventional ACSF without Zn2+ and pretreated with ACSF containing 20 nM ZnCl2 for 1 h. In the case of mossy fiber excitation, however, presynaptic activity assessed with FM 4–64 is significantly suppressed in the stratum lucidum of brain slices pretreated with ACSF containing Zn2+, indicating that hippocampal excitability is enhanced in brain slices prepared with ACSF without Zn2+. The evidence suggests that low nanomolar concentration of Zn2+ is necessary for ACSF. Furthermore, exogenous Zn2+ has opposite effect on LTP induction between in vitro and in vivo experiments. It is required to pay attention to extracellular Zn2+ concentration to understand synaptic function precisely.  相似文献   

9.
Green tea and its major constituent epigallocatechin gallate (EGCG) are known for their chemopreventive effects including those against prostate cancer, which could be mediated by metal ions. Zn2+ is an essential trace element that is required for human health and plays an important role in the normal function of the prostate gland. In the present study, the effect of EGCG on cell membrane and mitochondria of PC-3 (prostate carcinoma) cells in the presence and absence of Zn2+ was studied. These studies revealed that EGCG, Zn2+, or EGCG + Zn2+ affected the morphology of PC-3 cells and induced apoptosis in PC-3 cells. It was observed that effects of treatment with EGCG, Zn2+, or EGCG + Zn2+on mitochondria showed EGCG + Zn2+ > Zn2+ > EGCG, including cytochrome C release from the intermembrane space into the cytosol, inhibited the synthesis of ATP, loss of mitochondrial membrane potential, and activation of caspase-9. However, the order of effect on depressing membrane fluidity of PC-3 cells was EGCG > EGCG + Zn2+ > Zn2+. In summary, these findings suggest that EGCG, Zn2+, and EGCG + Zn2+ induce necrosis or apoptosis of PC-3 cells through mitochondria-mediated apoptotic pathway and free Zn2+-enhanced effects of EGCG on PC-3 cells due to its interactions with mitochondria.  相似文献   

10.
The influence of K+ and Ca2+ on Zn2+ transport into cultured human fibroblasts was investigated. Zn2+ uptake was markedly reduced in the presence of both valinomycin and nigericin (electrogenic and electroneutral K + ionophores, respectively), and by reduction in the transmembrane K+ gradient produced by replacement of extracellular K+ with Na+, suggesting that Zn2+ may be driven by a Zn2+/K+ counter-transport system. To test the counter-transport hypothesis, we used 86Rb as an analog of K + for efflux studies. The rate of Rb+ efflux was 3760 times that of Zn2+ uptake, thus the component of K+ involved in the Zn2+ counter-transport system was only a small proportion of the total K+ efflux. In investigating the effect of Ca2+ on Zn2+ uptake, we identified two components: (1) a basal Zn2+ uptake pathway, independent of hormonal or growth factors which does not require extracellular Ca2+ and (2) a Ca2+-dependent mechanism. The absence of Ca2+ decreased Zn2+ uptake, while increasing extracellular C+a2+ stimulated Zn2+ uptake. The effect was mediated by Ca2+ influx as the ionophores A23187 and ionomycin also stimulated Zn2+ uptake. We could not ascribe the Ca2+ effect to known Ca2+ influx pathways. We conclude that Zn2+ uptake occurs by a K+-dependent process, possibly by Zn2+/K+ counter-transport and that a component of this is also Ca2+-dependent.  相似文献   

11.
The selective inhibition of an aminopeptidase from Aeromonas proteolytica (AAP), a dinuclear Zn2+ hydrolase, by 8-quinolinol (8-hydroxyquinoline, 8-HQ) derivatives is reported. We previously reported on the preparation of 8-HQ-pendant cyclens as Zn2+ fluorophores (cyclen is 1,4,7,10-tetraazacyclododecane), in which the nitrogen and phenolate of the 8-HQ units (as well as the four nitrogens of cyclen) bind to Zn2+ in a bidentate manner to form very stable Zn2+ complexes at neutral pH (K d = 8–50 fM at pH 7.4). On the basis of this finding, it was hypothesized that 8-HQ derivatives have the potential to function as specific inhibitors of Zn2+ enzymes, especially dinuclear Zn2+ hydrolases. Assays of 8-HQ derivatives as inhibitors were performed against commercially available dinuclear Zn2+ enzymes such as AAP and alkaline phosphatase. 8-HQ and the 5-substituted 8-HQ derivatives were found to be competitive inhibitors of AAP with inhibition constants of 0.16–29 μM at pH 8.0. The nitrogen at the 1-position and the hydroxide at the 8-position of 8-HQ were found to be essential for the inhibition of AAP. Fluorescence titrations of these drugs with AAP and an X-ray crystal structure analysis of an AAP–8-HQ complex (1.3-Å resolution) confirmed that 8-HQ binds to AAP in the “Pyr-out” mode, in which the hydroxide anion of 8-HQ bridges two Zn2+ ions (Zn1 and Zn2) in the active site of AAP and the nitrogen atom of 8-HQ coordinates to Zn1 (Protein Data Bank code 3VH9).  相似文献   

12.
Coagulation factor IX/coagulation factor X binding protein from the venom of Agkistrodon halys Pallas (AHP IX/X-bp) is a unique coagulation factor IX/coagulation factor X binding protein (IX/X-bp). Among all IX/X-bps identified, only AHP IX/X-bp is a Ca2+- and Zn2+-binding protein. The binding properties of Ca2+ and Zn2+ ions binding to apo-AHP IX/X-bp and their effects on the stability of the protein have been investigated by isothermal titration calorimetry, fluorescence spectroscopy, and differential scanning calorimetry. The results show that AHP IX/X-bp has two metal binding sites, one specific for Ca2+ with lower affinity for Zn2+ and one specific for Zn2+ with lower affinity for Ca2+. The bindings of Ca2+ and Zn2+ in the two sites are entropy- and enthalpy-driven. The binding affinity of AHP IX/X-bp for Zn2+ is 1 order of magnitude higher than for Ca2+ for either high-affinity binding or low-affinity binding, which accounts for the existence of one Zn2+ in the purified AHP IX/X-bp. Guanidine hydrochloride (GdnHCl)-induced and thermally induced denaturations of Ca2+–Ca2+-AHP IX/X-bp, Zn2+–Zn2+-AHP IX/X-bp, and Ca2+–Zn2+-AHP IX/X-bp are all a two-state processes with no detectable intermediate state(s), indicating the Ca2+/Zn2+-induced tight packing of the protein. Ca2+ and Zn2+ increase the structural stability of AHP IX/X-bp against GdnHCl or thermal denaturation to a similar extent. Although Ca2+ and Zn2+ have no obvious effect on the secondary structure of AHP IX/X-bp, they induce different rearrangements in local conformation. The Zn2+-stabilized specific conformation of AHP IX/X-bp may be helpful to its recognition of the structure of coagulation factor IX. This work suggests that in vitro, Ca2+ plays a structural rather than an active role in the anticoagulation of AHP IX/X-bp, whereas Zn2+ plays both structural and active roles in the anticoagulation. In blood, Ca2+ binds to AHP IX/X-bp and stabilizes its structure, whereas Zn2+ cannot bind to AHP IX/X-bp owing to the low Zn2+ concentration. AHP IX/X-bp prolongs the clotting time in vivo through its binding only with coagulation factor X/activated coagulation factor X.  相似文献   

13.
The objectives of the present study were to investigate the frequencies of hyperprolactinemia and hypozincemia in patients undergoing hemodialysis (HD) or continuous ambulatory peritoneal dialysis (CAPD), the associations between blood levels of zinc (Zn2+) and hormones, and dietary zinc intake amount and its relation to zincemia. We studied 28 patients (14 HD and 14 CAPD) who had their blood levels of Zn2+, prolactin (PRL), parathyroid hormone (PTH), and gonadotropins (LH, FSH) evaluated. Thirteen patients had dietary nutrient amounts evaluated from a 3-d nutritional record. Hyperprolactinemia occurred in 29% patients (HD = CAPD), hypozincemia in 62% (20% HD and 42% CAPD), and low dietary Zn2+ intake in 90% of patients. No correlation among blood concentration of Zn2+ and PRL, PTH, LH, and FSH were observed in the two modalities of dialysis or between zincemia and Zn2+ ingestion. We concluded that the occurrence of hyperprolactinemia and hypozincemia were not related to dialysis modality and that zincemia did not reflect the observed low dietary intake of Zn2+.  相似文献   

14.
Spreading depolarization (SD) is a feed‐forward wave that propagates slowly throughout brain tissue and recovery from SD involves substantial metabolic demand. Presynaptic Zn2+ release and intracellular accumulation occurs with SD, and elevated intracellular Zn2+ ([Zn2+]i) can impair cellular metabolism through multiple pathways. We tested here whether increased [Zn2+]i could exacerbate the metabolic challenge of SD, induced by KCl, and delay recovery in acute murine hippocampal slices. [Zn2+]i loading prior to SD, by transient ZnCl2 application with the Zn2+ ionophore pyrithione (Zn/Pyr), delayed recovery of field excitatory post‐synaptic potentials (fEPSPs) in a concentration‐dependent manner, prolonged DC shifts, and significantly increased extracellular adenosine accumulation. These effects could be due to metabolic inhibition, occurring downstream of pyruvate utilization. Prolonged [Zn2+]i accumulation prior to SD was required for effects on fEPSP recovery and consistent with this, endogenous synaptic Zn2+ release during SD propagation did not delay recovery from SD. The effects of exogenous [Zn2+]i loading were also lost in slices preconditioned with repetitive SDs, implying a rapid adaptation. Together, these results suggest that [Zn2+]i loading prior to SD can provide significant additional challenge to brain tissue, and could contribute to deleterious effects of [Zn2+]i accumulation in a range of brain injury models.  相似文献   

15.
It has been reported that Zn7-metallothionein (MT), contains one weak binding site for Zn2+. To test this conclusion, rabbit liver MT isolated at pH 7 was reacted with chelating agents of modest affinity for Zn2+. Contrary to the previous study, no evidence was found for Zn2+ stoichiometrically bound to the protein with an apparent stability constant of about 108. Indeed, stability constant measurements based upon competition between Zn7-MT and ligands of known stability with Zn2+ showed that all of the protein bound Zn2+ displayed the same stability constant at pH 7.4 and 25 °C of (1.7 ± 0.6) × 1011. Brief reaction of Zn7-MT with strong acid converted it into MT* and upon reneutralization into Zn7-MT*, which demonstrated reactivity of about 1 Zn2+/mol MT with competing ligands. Acid titration of Zn7-MT to pH 2 or below rapidly resulted in the formation of Zn7-MT* that displayed biphasic titration with base, revealing the rebinding of lower affinity Zn2+ between pH 5 and 7. Since MT is commonly acidified during preparation, care must be taken to document which form of the protein is present in subsequent experiments at pH 7.  相似文献   

16.
There is growing evidence that plasma-activated medium (PAM), which is prepared by non-thermal plasma (NTP) irradiation of cell-free medium, is a beneficial tool for cancer therapy. PAM has been reported to preferentially kill cancer cells; however, its mechanism is not fully understood. Since PAM contains reactive oxygen species (ROS) and reactive nitrogen species, the anti-cancer effects of PAM are thought to be attributed to oxidative stress induced by these reactive molecules. Oxidative stress has been shown to release zinc (Zn2+) from intracellular Zn2+ stores and provoke Zn2+-dependent cell death. We have previously demonstrated that intracellular free Zn2+ plays a critical role in PAM-induced cell death in human neuroblastoma SH-SY5Y cells. In this study, we found that normal human fibroblasts were less susceptible to PAM cytotoxicity compared with SH-SY5Y cells. PAM decreased intracellular NAD+ levels in both cells, whereas the depletion of ATP and mitochondrial ROS generation was hardly observed in fibroblasts. Intracellular mobile Zn2+ contents of fibroblasts were lower than those of SH-SY5Y cells. PAM suppressed the activity of aconitase, which is a tricarboxylic acid cycle enzyme, only in SH-SY5Y cells, and N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a Zn2+ chelator, counteracted the suppression. The combination treatment with PAM and Zn2+ augmented PAM-induced ATP depletion, mitochondrial ROS generation, and cytotoxicity in fibroblasts. These findings suggest the possibility that cells with high intracellular mobile Zn2+ are susceptible to PAM cytotoxicity. Therefore, we concluded that the differences in mobile Zn2+ levels affect PAM-induced cellular responses.  相似文献   

17.
Ferrochelatase (EC 4.99.1.1), the terminal enzyme in the heme biosynthetic pathway, catalyzes the insertion of Fe2+ into protoporphyrin IX, generating heme. In vitro assays have shown that all characterized ferrochelatases can also incorporate Zn2+ into protoporphyrin IX. Previously Zn2+ has been observed at an inner metal binding site close to the porphyrin binding site. Mg2+, which stimulates Zn2+ insertion by Bacillus subtilis ferrochelatase, has been observed at an outer metal binding site. Exchange of Glu272 to a serine eliminated the stimulative effect of Mg2+. We found that Zn2+ quenched the fluorescence of B. subtilis ferrochelatase and this quenching was used to estimate the metal affinity. Trp230 was identified as the intrinsic fluorophore responsible for the observed quenching pattern. The affinity for Zn2+ could be increased by incubating the ferrochelatase with the transition state analogue N-methyl mesoporphyrin IX, which reflected a close collaborative arrangement between the two substrates in the active site. We also showed that the affinity for Zn2+ was lowered in the presence of Mg2+ and that bound Zn2+ was released upon binding of Mg2+. In the ferrochelatase with a Glu272Ser modification, the interaction between Zn2+ and Mg2+ was abolished. It could thereby be demonstrated that the presence of a metal at one metal binding site affected the metal affinity of another, providing the enzyme with a site that regulates the enzymatic activity.  相似文献   

18.
Intracellular Zn2+ toxicity is associated with mitochondrial dysfunction. Zn2+ depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn2+-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn2+-induced depolarization with the effects of Ca2+ in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca2+ caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg2+, ADP and cyclosporine A. Zn2+ also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn2+-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca2+ and Zn2+ in a calcein-retention assay. Consistent with the well-documented ability of Ca2+ to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn2+-treated mitochondria. Considered together, our results suggest that Ca2+ and Zn2+ depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn2+-induced depolarization, and that Zn2+ is not a particularly potent mitochondrial inhibitor.  相似文献   

19.
At low concentrations (<1 μM), and in the presence of Mg2+, Zn2+ inhibits the activity of rabbit muscle fructose 1,6-bisphosphatase (EC 3.1.3.11). At higher concentrations Zn2+ can replace Mg2+ as the activating cation. The inhibitory effects of Zn2+ are associated with its binding to 4 high-affinity sites (1 per subunit). Binding to a second set of 4 sites requires the presence of the substrate, fructose 1,6-bisphosphate, and binding of Zn2+ to this set of sites restores the catalytic activity. In the absence of EDTA, Zn2+ is a better activating cation than Mg2+. The muscle enzyme differs from rabbit liver fructose 1,6-bisphosphatase in the number of binding sites (8 as compared to 12 for the rabbit liver enzyme) and in showing higher activity with Zn2+ as the activating cation. The results suggest that Zn2+ may be the physiological activator.  相似文献   

20.
Mg2+ and Zn2+ are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca2+-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg2+ and Zn2+ on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg2+ and Zn2+ had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg2+ and Zn2+ caused similar reductions in the rate and length of rapid mineral formation, but Zn2+ was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg2+ and Zn2+ caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg2+ altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn2+ caused significantly less effect, low (<20 μM) levels causing almost no inhibition. Levels of Zn2+ present in MVs do not appear to inhibit their nucleational activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号