首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers.  相似文献   

2.
The S-adenosylmethionine (AdoMet) analog sinefungin is a natural product antibiotic that inhibits nucleic acid methyltransferases and arrests the growth of unicellular eukarya and eukaryal viruses. The basis for the particular sensitivity of fungi and protozoa to sinefungin is not known. Here we report the isolation and characterization of spontaneous sinefungin-resistant mutants of the budding yeast Saccharomyces cerevisiae. In all cases, sinefungin resistance was attributable to a loss-of-function mutation in Sam3, the yeast high-affinity AdoMet transporter. Overexpression of wild-type Sam3 increased the sensitivity of yeast to growth inhibition by sinefungin. Thus, Sam3 is a tunable determinant of sinefungin potency. The shared ability of protozoan parasites to import AdoMet might determine sinefungin's anti-infective spectrum. Insights to the intracellular action of sinefungin stem from the finding that increased gene dosage of yeast AdoMet synthase plus cap guanine-N7 methyltransferase afforded greater resistance to sinefungin than either enzyme alone. These results are consistent with the proposal that mRNA cap methylation is a principal target of sinefungin's bioactivity.  相似文献   

3.
The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2Δ pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs.  相似文献   

4.
Sugars, the major energy source for many organisms, must be transported across biological membranes. Glucose is the most abundant sugar in human plasma and in many other biological systems and has been the primary focus of sugar transporter studies in eukaryotes. We have previously cloned and characterized a family of glucose transporter genes from the protozoan parasite Leishmania. These transporters, called LmGT1, LmGT2, and LmGT3, are homologous to the well characterized glucose transporter (GLUT) family of mammalian glucose transporters. We have demonstrated that LmGT proteins are important for parasite viability. Here we show that one of these transporters, LmGT2, is a more effective carrier of the pentose sugar d-ribose than LmGT3, which has a 6-fold lower relative specificity (Vmax/Km) for ribose. A pair of threonine residues, located in the putative extracellular loops joining transmembrane helices 3 to 4 and 7 to 8, define a filter that limits ribose approaching the exofacial substrate binding pocket in LmGT3. When these threonines are substituted by alanine residues, as found in LmGT2, the LmGT3 permease acquires ribose permease activity that is similar to that of LmGT2. The location of these residues in hydrophilic loops supports recent suggestions that substrate recognition is separated from substrate binding and translocation in this important group of transporters.  相似文献   

5.
This paper reports the characterization of a new ABC transporter (LtrABC1.1), related to the human ABCA subfamily, in the protozoan parasite Leishmania tropica. LtrABC1.1 is a tandem duplicated gene flanked by inverted repeats. LtrABC1.1 is expressed mainly in the flagellar pocket of the parasite. Drug resistance studies in Leishmania overexpressing LtrABC1.1 showed the transporter not to confer resistance to a range of unrelated drugs. LtrABC1.1 appears to be involved in lipid movements across the plasma membrane of the parasite since overexpression reduces the accumulation of fluorescent phospholipid analogues. The activity of this protein may also affect membrane movement processes since secreted acid phosphatase (SAP) activity was significantly lower in promastigotes overexpressing LtrABC1.1. In vitro infection experiments with macrophages indicated LtrABC1.1-transfected parasites to be significantly less infective. Together, these results suggest that this new ABC transporter could play a role in lipid movements across the plasma membrane, and that its activity might influence vesicle trafficking. This is the first ABCA-like transporter described in unicellular eukaryotes.  相似文献   

6.
The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.  相似文献   

7.
Transporters as mediators of drug resistance in Plasmodium falciparum   总被引:1,自引:0,他引:1  
Drug resistance represents a major obstacle in the radical control of malaria. Drug resistance can arise in many different ways, but recent developments highlight the importance of mutations in transporter molecules as being major contributors to drug resistance in the human malaria parasite Plasmodium falciparum. While approximately 2.5% of the P. falciparum genome encodes membrane transporters, this review concentrates on three transporters, namely the chloroquine resistance transporter PfCRT, the multi-drug resistance transporter 1 PfMDR1, and the multi-drug resistance-associated protein PfMRP, which have been strongly associated with resistance to the major antimalarial drugs. The studies that identified these entities as contributors to resistance, and the possible molecular mechanisms that can bring about this phenotype, are discussed. A deep understanding of the underpinning mechanisms, and of the structural specificities of the players themselves, is a necessary basis for the development of the new drugs that will be needed for the future armamentarium against malaria.  相似文献   

8.
Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. The chlorinated glutamine analogue acivicin has shown good activity against Leishmania cells and was shown to target several enzymes containing amidotransferase domains. We selected a Leishmania tarentolae clone for acivicin resistance. The genome of this resistant strain was sequenced and the gene coding for the amidotransferase domain-containing GMP synthase was found to be amplified. Episomal expression of this gene in wild-type L. tarentolae revealed a modest role in acivicin resistance. The most prominent defect observed in the resistant mutant was reduced uptake of glutamate, and through competition experiments we determined that glutamate and acivicin, but not glutamine, share the same transporter. Several amino acid transporters (AATs) were either deleted or mutated in the resistant cells. Some contributed to the acivicin resistance phenotype although none corresponded to the main glutamate transporter. Through sequence analysis one AAT on chromosome 22 corresponded to the main glutamate transporter. Episomal expression of the gene coding for this transporter in the resistant mutant restored glutamate transport and acivicin susceptibility. Its genetic knockout led to reduced glutamate transport and acivicin resistance. We propose that acivicin binds covalently to this transporter and as such leads to decreased transport of glutamate and acivicin thus leading to acivicin resistance.  相似文献   

9.
10.
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis.  相似文献   

11.
Quantitative trait locus (QTL) mapping studies have been integral in identifying and understanding virulence mechanisms in the parasite Toxoplasma gondii. In this study, we interrogated a different phenotype by mapping sinefungin (SNF) resistance in the genetic cross between type 2 ME49-FUDRr and type 10 VAND-SNFr. The genetic map of this cross was generated by whole-genome sequencing of the progeny and subsequent identification of single nucleotide polymorphisms (SNPs) inherited from the parents. Based on this high-density genetic map, we were able to pinpoint the sinefungin resistance phenotype to one significant locus on chromosome IX. Within this locus, a single nonsynonymous SNP (nsSNP) resulting in an early stop codon in the TGVAND_290860 gene was identified, occurring only in the sinefungin-resistant progeny. Using CRISPR/CAS9, we were able to confirm that targeted disruption of TGVAND_290860 renders parasites sinefungin resistant. Because disruption of the SNR1 gene confers resistance, we also show that it can be used as a negative selectable marker to insert either a positive drug selection cassette or a heterologous reporter. These data demonstrate the power of combining classical genetic mapping, whole-genome sequencing, and CRISPR-mediated gene disruption for combined forward and reverse genetic strategies in T. gondii.  相似文献   

12.
Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae l-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human l-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, l-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients.  相似文献   

13.
Sugars play indispensable roles in biological reactions and are distributed into various tissues or organelles via transporters in plants. Under abiotic stress conditions, plants accumulate sugars as a means to increase stress tolerance. Here, we report an abiotic stress-inducible transporter for monosaccharides from Arabidopsis thaliana that is termed ESL1 (ERD six-like 1). Expression of ESL1 was induced under drought and high salinity conditions and with exogenous application of abscisic acid. Promoter analyses using β-glucuronidase and green fluorescent protein reporters revealed that ESL1 is mainly expressed in pericycle and xylem parenchyma cells. The fluorescence of ESL1-green fluorescent protein-fused protein was detected at tonoplast in transgenic Arabidopsis plants and tobacco BY-2 cells. Furthermore, alanine-scanning mutagenesis revealed that an N-terminal LXXXLL motif in ESL1 was essential for its localization at the tonoplast. Transgenic BY-2 cells expressing mutated ESL1, which was localized at the plasma membrane, showed an uptake ability for monosaccharides. Moreover, the value of Km for glucose uptake activity of mutated ESL1 in the transgenic BY-2 cells was extraordinarily high, and the transport activity was independent from a proton gradient. These results indicate that ESL1 is a low affinity facilitated diffusion transporter. Finally, we detected that vacuolar invertase activity was increased under abiotic stress conditions, and the expression patterns of vacuolar invertase genes were similar to that of ESL1. Under abiotic stress conditions, ESL1 might function coordinately with the vacuolar invertase to regulate osmotic pressure by affecting the accumulation of sugar in plant cells.  相似文献   

14.

Background

Drug resistance is a major problem in leishmaniasis chemotherapy. RNA expression profiling using DNA microarrays is a suitable approach to study simultaneous events leading to a drug-resistance phenotype. Genomic analysis has been performed primarily with Old World Leishmania species and here we investigate molecular alterations in antimony resistance in the New World species L. amazonensis.

Methods/Principal Findings

We selected populations of L. amazonensis promastigotes for resistance to antimony by step-wise drug pressure. Gene expression of highly resistant mutants was studied using DNA microarrays. RNA expression profiling of antimony-resistant L. amazonensis revealed the overexpression of genes involved in drug resistance including the ABC transporter MRPA and several genes related to thiol metabolism. The MRPA overexpression was validated by quantitative real-time RT-PCR and further analysis revealed that this increased expression was correlated to gene amplification as part of extrachromosomal linear amplicons in some mutants and as part of supernumerary chromosomes in other mutants. The expression of several other genes encoding hypothetical proteins but also nucleobase and glucose transporter encoding genes were found to be modulated.

Conclusions/Significance

Mechanisms classically found in Old World antimony resistant Leishmania were also highlighted in New World antimony-resistant L. amazonensis. These studies were useful to the identification of resistance molecular markers.  相似文献   

15.
Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzi strains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison of TcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1 transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1 genes of BZ-susceptible and resistant strains were investigated by computational tools.  相似文献   

16.
Antimonials remain the first line drug against the protozoan parasite Leishmania but their efficacy is threatened by resistance. We carried out a RNA expression profiling analysis comparing an antimony-sensitive and -resistant (Sb2000.1) strain of Leishmania infantum using whole-genome 70-mer oligonucleotide microarrays. Several genes were differentially expressed between the two strains, several of which were found to be physically linked in the genome. MRPA, an ATP-binding cassette (ABC) gene known to be involved in antimony resistance, was overexpressed in the antimony-resistant mutant along with three other tandemly linked genes on chromosome 23. This four gene locus was flanked by 1.4 kb repeated sequences from which an extrachromosomal circular amplicon was generated in the resistant cells. Interestingly, gene expression modulation of entire chromosomes occurred in the antimony-resistant mutant. Southern blots analyses and comparative genomic hybridizations revealed that this was either due to the presence of supernumerary chromosomes or to the loss of one chromosome. Leishmania parasites with haploid chromosomes were viable. Changes in copy number for some of these chromosomes were confirmed in another antimony-resistant strain. Selection of a partial revertant line correlated antimomy resistance levels and the copy number of aneuploid chromosomes, suggesting a putative link between aneuploidy and drug resistance in Leishmania.  相似文献   

17.
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites.  相似文献   

18.
Transporters essential for neurotransmission in mammalian organisms and bacterial multidrug transporters involved in antibiotic resistance are evolutionarily related. To understand in more detail the evolutionary aspects of the transformation of a bacterial multidrug transporter to a mammalian neurotransporter and to learn about mechanisms in a milieu amenable for structural and biochemical studies, we identified, cloned, and partially characterized bacterial homologues of the rat vesicular monoamine transporter (rVMAT2). We performed preliminary biochemical characterization of one of them, Brevibacillus brevis monoamine transporter (BbMAT), from the bacterium B. brevis. BbMAT shares substrates with rVMAT2 and transports them in exchange with >1H+, like the mammalian transporter. Here we present a homology model of BbMAT that has the standard major facilitator superfamily fold; that is, with two domains of six transmembrane helices each, related by 2-fold pseudosymmetry whose axis runs normal to the membrane and between the two halves. The model predicts that four carboxyl residues, a histidine, and an arginine are located in the transmembrane segments. We show here that two of the carboxyls are conserved, equivalent to the corresponding ones in rVMAT2, and are essential for H+-coupled transport. We conclude that BbMAT provides an excellent experimental paradigm for the study of its mammalian counterparts and bacterial multidrug transporters.  相似文献   

19.
In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains for the S-adenosylmethionine (AdoMet) reactions. Because PfPMT is essential for normal growth and survival of Plasmodium and is not found in humans, it is an antiparasitic target. Here we describe the 1.55 Å resolution crystal structure of PfPMT in complex with AdoMet by single-wavelength anomalous dispersion phasing. In addition, 1.19–1.52 Å resolution structures of PfPMT with pEA (substrate), phosphocholine (product), sinefungin (inhibitor), and both pEA and S-adenosylhomocysteine bound were determined. These structures suggest that domain rearrangements occur upon ligand binding and provide insight on active site architecture defining the AdoMet and phosphobase binding sites. Functional characterization of 27 site-directed mutants identifies critical active site residues and suggests that Tyr-19 and His-132 form a catalytic dyad. Kinetic analysis, isothermal titration calorimetry, and protein crystallography of the Y19F and H132A mutants suggest a reaction mechanism for the PMT. Not only are Tyr-19 and His-132 required for phosphobase methylation, but they also form a “catalytic” latch that locks ligands in the active site and orders the site for catalysis. This study provides the first insight on this antiparasitic target enzyme essential for survival of the malaria parasite; however, further studies of the multidomain PMT from plants and nematodes are needed to understand the evolutionary division of metabolic function in the phosphobase pathway of these organisms.  相似文献   

20.
TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain, which was recognized by TOR in this internalization pathway, was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature-sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号