首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual dimorphism, or sex-specific trait expression, may evolve when selection favours different optima for the same trait between sexes, that is, under antagonistic selection. Intra-locus sexual conflict exists when the sexually dimorphic trait under antagonistic selection is based on genes shared between sexes. A common assumption is that the presence of sexual-size dimorphism (SSD) indicates that sexual conflict has been, at least partly, resolved via decoupling of the trait architecture between sexes. However, whether and how decoupling of the trait architecture between sexes has been realized often remains unknown. We tested for differences in architecture of adult body size between sexes in a species with extreme SSD, the African hermit spider (Nephilingis cruentata), where adult female body size greatly exceeds that of males. Specifically, we estimated the sex-specific importance of genetic and maternal effects on adult body size among individuals that we laboratory-reared for up to eight generations. Quantitative genetic model estimates indicated that size variation in females is to a larger extent explained by direct genetic effects than by maternal effects, but in males to a larger extent by maternal than by genetic effects. We conclude that this sex-specific body-size architecture enables body-size evolution to proceed much more independently than under a common architecture to both sexes.  相似文献   

2.
Natural selection favors animals that evolve developmental and behavioral responses that buffer the negative effects of food restrictions. These buffering responses vary both between species and within species. Many studies have shown sex‐specific responses to environmental changes, usually in species with sexual size dimorphism (SSD), less found in species with weak or no SSD, which suggests that sizes of different sexes are experiencing different selections. However, previous studies usually investigated development and behavior separately, and the balanced situation where males and females of sexually dimorphic species respond in the same way to food restriction remains little known. Here, we investigated this in Phintelloides versicolor (Salticidae) that presents sexual dimorphism in color and shape but weak SSD. We examined whether food restriction induced the same responses in males and females in development duration, adult body size and weight, daily time allocated to foraging, and hunting. We found food restriction induced similar responses in both sexes: both exhibited longer development duration, smaller adult body size and weight, higher probability of staying outside nests and noticing prey immediately, and higher hunting success. However, there were sexual differences regardless of food condition: females showed faster development, smaller adult body size, higher probability of staying outside of nests, and higher hunting success. These indicated the differential selection on male and female sizes of P. versicolor could be under a balanced situation, where males and females show equal developmental and behavioral plasticity to environmental constraints.  相似文献   

3.
Achieving high sexual size dimorphism in insects: females add instars   总被引:2,自引:0,他引:2  
Abstract.  1. In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars.
2. Based on a survey of published case studies, the present review shows that sex-related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males.
3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female-biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development.
4. As in the case of additional instars, SSD is fully formed late in ontogeny, larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected.
5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve.  相似文献   

4.
W. R. Siegfried 《Ostrich》2013,84(3):173-178
Many small plovers Charadrius spp. have sexually monomorphic plumage and cryptic sexual size dimorphism. The objective of our study was to assess the variation in body sizes between male and female plovers breeding in Madagascar. We collected blood samples and data on adult body sizes of four small plovers (Madagascar Plover Charadrius thoracicus, Kittlitz's Plover C. pecuarius, White-fronted Plover C. marginatus and Three-banded Plover C. tricollaris), and used molecular genetic markers to sex the adults. We found significant differences in body size among the four species, and between sexes. Furthermore, individuals from the southern ecoregion tended to be larger than in the western ecoregion. The Madagascar Plover's body size was significantly more dimorphic than the Kittlitz's and White-fronted Plovers. Breeding Malagasy plovers' show significant sexual size dimorphism (SSD): Madagascar Plover females were heavier and had longer wings than males, whereas the males had longer tarsi; in White-fronted Plover only wing length was different between the sexes. Taken together, our work reports SSD in small African plovers that exhibit monomorphic plumage, and we propose that SSD may be more common than currently acknowledged; we term this 'cryptic sexual size dimorphism'. Our results also suggest sexual selection and/or natural selection exert different pressures on body size in different Malagasy plover species.  相似文献   

5.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

6.
Sexual size dimorphism (SSD) is a general phenomenon in lizards, and can evolve through sexual selection or natural selection. But natural selection, which was thought to operate mainly through reducing the competition be- tween the two sexes (niche divergence hypothesis), gave rise to a lot of controversy. We tested the niche divergence hypothesis in the toad-headed lizard Phrynocephalus przewalskii by comparing diet composition and prey sizes between males and females. The species was found to be sexual dimorphic, with males having relatively larger snout-vent length, head width, head length, and tail length, while females have relatively larger abdomen length. Based on analysis of 93 studied stomachs, a total of 1359 prey items were identified. The most common prey items were formicid, lygaeid and tenebrionid. The two sexes did not differ in the relative proportions of prey size categories they consumed and the dietary overlap based on prey species was high (O = 0.989). In addition, the meal size, the volume or any maximal dimension of the largest prey item in the stomach was not explained by the sexes. According to our results, food niche divergence might not play an important role in the SSD evolution ofP. przewalskii.  相似文献   

7.
Sexual size dimorphisms (SSDs) in body size are expected to evolve when selection on female and male sizes favors different optima. Many insects show female-biased SSD that is usually explained by the strong fecundity advantage of larger females. However, in some insects, males are as large as or even larger than females. The seed bug Togo hemipterus (Scott) also exhibits a male-biased SSD in body size. Many studies that have clarified the evolutionary causes of male-biased SSD have focused only on male advantages due to male–male competition. To clarify the evolutionary causes of male-biased SSD in body size, we should examine the degree of not only the sexual selection that favors larger males but also natural selection that is acting on female fecundity. The obtained results, which showed higher mating acceptance rates to larger males, implies that females prefer larger males. No significant relationship was detected between female body size and fecundity; body size effects on female fecundity were weak or undetectable. We conclude that male-biased SSD in T. hemipterus can be accounted for by a combination of sexual selection through male–male competition and female choice favoring large males, plus weak or undetectable natural selection that favors large females due to a fecundity advantage.  相似文献   

8.
Female-biased sexual size dimorphism is uncommon among vertebrates and traditionally has been attributed to asymmetric selective pressures favoring large fecund females (the fecundity-advantage hypothesis) and/or small mobile males (the small-male advantage hypothesis). I use a phylogenetically based comparative method to address these hypotheses for the evolution and maintenance of sexual size dimorphism among populations of three closely related lizard species (Phrynosoma douglasi, P. ditmarsi, and P. hernandezi). With independent contrasts I estimate evolutionary correlations among female body size, male body size, and sexual size dimorphism (SSD) to determine whether males have become small, females have become large, or both sexes have diverged concurrently in body size during the evolutionary Xhistory of this group. Population differences in degree of SSD are inversely correlated with average male body size, but are not correlated with average female body size. Thus, variation in SSD among populations has occurred predominantly through changes in male size, suggesting that selective pressures on small males may affect degree of SSD in this group. I explore three possible evolutionary mechanisms by which the mean male body size in a population could evolve: changes in size at maturity, changes in the variance of male body sizes, and changes in skewness of male body size distributions. Comparative analyses indicate that population differentiation in male body size is achieved by changes in male size at maturity, without changes in the variance or skewness of male and female size distributions. This study demonstrates the potential of comparative methods at lower taxonomic levels (among populations and closely related species) for studying microevolutionary processes that underlie population differentiation.  相似文献   

9.
A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch's rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch's rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch's rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female-biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life-history trade-offs and sexual selection.  相似文献   

10.
Rensch’s rule refers to a pattern in sexual size dimorphism (SSD) in which SSD increases with body size when males are the larger sex and decreases with body size when females are the larger sex. Using data on body size from 40 populations and age from 31 populations of the rice frog Rana limnochari with female-biased size dimorphism, I tested the consistency of allometric relationships between males and females with Rensch’s rule and evaluated the hypothesis that SSD was largely a function of age differences between the sexes. Statistical comparisons of body sizes between the sexes showed the evidence for the inverse of Rensch’s rule, indicating the level of SSD increased with increasing mean body size. One of the explanations for the occurrence of the inverse of Rensch’s rule may be the fecundity selection hypothesis assuming increased reproductive output in large females. However, differences in age between males and females among populations could explain mildly the variation in SSD.  相似文献   

11.
Sexual size dimorphism (SSD) describes divergent body sizes of adult males and females. While SSD has traditionally been explained by sexual and fecundity selection, recent advances in physiology and developmental biology emphasize that SSD would occur proximately because of sexual differences in ontogenetic growth trajectories (i.e., growth rate and duration). Notably, these ontogenetic traits are subject to energetic or time constraints and thus traded off with fitness components (e.g., survival and reproduction). To elucidate the importance of such ontogenetic trade‐offs in the evolution of SSD, we developed a new theoretical framework by extending quantitative genetic models for the evolution of sexual dimorphism in which we reinterpret the trait as body size and reformulate sex‐specific fitness in size‐dependent manners. More specifically, we assume that higher growth rate or longer growth duration leads to larger body size and higher reproductive success but incurs the cost of lower survivorship or shorter reproduction period. We illustrate how two sexes would optimize ontogenetic growth trajectories in sex‐specific ways and exhibit divergent body sizes. The present framework provides new insights into the evolutionary theory of SSD and predictions for empirical testing.  相似文献   

12.
Sexual size dimorphism (SSD) is a common phenomenon and is a central topic in evolutionary biology. Recently, the importance of pursuing an ontogenetic perspective of SSD has been emphasized, to elucidate the proximate physiological mechanisms leading to its evolution. However, such research has seldom focused on the critical periods when males and females diverge. Using mark-recapture data, we investigated the development of SSD, sex-specific survivorship, and growth rates in Phrynocephalus przewalskii (Agamidae). We demonstrated that both male and female lizards are reproductively mature at age 10–11 months (including 5 months hibernation). Male-biased SSD in snout-vent length (SVL) was only found in adults and was fully expressed at age 11 months (June of the first full season of activity), just after sexual maturation. However, male-biased SSD in tail length (TL), hind-limb length (LL), and head width (HW) were fully expressed at age 9–10 months, just before sexual maturation. Analysis of age-specific linear growth rates identified sexually dimorphic growth during the fifth growth month (age 10–11 months) as the proximate cause of SSD in SVL. The males experienced higher mortality than females in the first 2 years and only survived better than females after SSD was well developed. This suggests that the critical period of divergence in the sizes of male and female P. przewalskii occurs between 10 and 11 months of age (May to June during the first full season of activity), and that the sexual difference in growth during this period is the proximate cause. However, the sexual difference in survivorship cannot explain the male-biased SSD in SVL. Our results indicate that performance-related characteristics, such as TL, HW, and LL diverged earlier than SVL. The physiological mechanisms underlying the different growth patterns of males and females may reflect different energy allocations associated with their different reproductive statuses.  相似文献   

13.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

14.
Evolutionary ecologists dating back to Darwin (1871) have sought to understand why males are larger than females in some species, and why females are the larger sex in others. Although the former is widespread in mammals, rodents and other small mammals usually exhibit low levels of sexual size dimorphism (SSD). Here, we investigate patterns of sexual dimorphism in 34 vole species belonging to the subfamily Arvicolinae in a phylogenetic comparative framework. We address the potential role of sexual selection and fecundity selection in creating sex differences in body size. No support was found for hyperallometric scaling of male body size to female body size. We observed a marginally significant relationship between SSD and the ratio of male to female home range size, with the latter being positively related to the level of intrasexual competition for mates. This suggests that sexual selection favours larger males. Interestingly, we also found that habitat type, but not mating system, constitutes a strong predictor of SSD. Species inhabiting open habitats – where males have extensive home ranges in order to gain access to as many females as possible – exhibit a higher mean dimorphism than species inhabiting closed habitats, where females show strong territoriality and an uniform distribution preventing males to adopt a territorial strategy for gaining copulations. Nonetheless, variation in the strength of sexual selection is not the only selective force shaping SSD in voles; we also found a positive association between female size and litter size across lineages. Assuming this relationship also exists within lineages (i.e. fecundity selection on female size), this suggests an additional role for variation in the strength of fecundity selection shaping interspecific differences in female size, and indirectly in SSD. Therefore our results suggest that different selective processes act on the sizes of males and females, but because larger size is favoured in both sexes, SSD is on average relatively small.  相似文献   

15.
Sexual size dimorphism (SSD) is a conspicuous yet poorly understood pattern across many organisms. Although artificial selection is an important tool for studying the evolution of SSD, previous studies have applied selection to only a single sex or to both sexes in the same direction. In nature, however, SSD likely arises through sex-specific selection on body size. Here, we use Tribolium castaneum flour beetles to investigate the evolution of SSD by subjecting males and females to sexually antagonistic selection on body size (sexes selected in opposite directions). Additionally, we examined correlated responses to body size selection in larval growth rates and development time. After seven generations, SSD remained unchanged in all selected lines; this observed lack of response to short-term selection may be attributed to evolutionary constraints arising from between-sex body size correlations. Developmental traits showed complex correlated responses under different selection treatments. These results suggest that sex-specific larval development patterns may facilitate the evolution of SSD.  相似文献   

16.
Sexual size dimorphism (SSD) is a common phenomenon caused by a variety of environmental and genetic mechanisms in animals. In the current study, we investigate the demography of a population of eastern fence lizards ( Sceloporus undulatus ) to compare age structure and survivorship between the sexes, and we examine growth rates of juveniles under both natural and controlled laboratory conditions to elucidate causes of SSD in this species. Furthermore, using our laboratory growth data, we examine the heritability of juvenile growth rates. Our results show that SSD develops in the field before the end of the first year of age (before sexual maturity) because juvenile females grow more rapidly than juvenile males. In the laboratory environment, however, we observed no sexual difference in growth rates for lizards up to the size of maturity in the field. Thus, sexual differences in growth rate and subsequent development of SSD in this population are highly plastic and subject to strong proximal control. We found high levels of additive genetic variance for juvenile growth, indicating a strong potential for selection to operate on juvenile growth rates. Our results indicate that selection on juvenile growth rate could account for differences in growth among populations but would not necessarily contribute to SSD within our population due to the high plasticity in growth rate.  相似文献   

17.
18.
Sexual reproduction reshapes the genetic architecture of digital organisms   总被引:4,自引:0,他引:4  
Modularity and epistasis, as well as other aspects of genetic architecture, have emerged as central themes in evolutionary biology. Theory suggests that modularity promotes evolvability, and that aggravating (synergistic) epistasis among deleterious mutations facilitates the evolution of sex. Here, by contrast, we investigate the evolution of different genetic architectures using digital organisms, which are computer programs that self-replicate, mutate, compete and evolve. Specifically, we investigate how genetic architecture is shaped by reproductive mode. We allowed 200 populations of digital organisms to evolve for over 10 000 generations while reproducing either asexually or sexually. For 10 randomly chosen organisms from each population, we constructed and analysed all possible single mutants as well as one million mutants at each mutational distance from 2 to 10. The genomes of sexual organisms were more modular than asexual ones; sites encoding different functional traits had less overlap and sites encoding a particular trait were more tightly clustered. Net directional epistasis was alleviating (antagonistic) in both groups, although the overall strength of this epistasis was weaker in sexual than in asexual organisms. Our results show that sexual reproduction profoundly influences the evolution of the genetic architecture.  相似文献   

19.
Sexual dimorphisms – phenotypic dissimilarities between the sexes – are common and widespread among plants and animals, and classical examples include differences in body size, colour, shape, ornamentation and behaviour. In general, sexual dimorphisms are hypothesized to evolve by way of sexual selection acting on one sex through priority-of-access for sexual partners via mate choice and/or intra-sexual competition. In snakes, males are the mate-searching sex and one form of sexual selection involves male–male competition in locating females by following pheromone trails using their forked tongues, the structure used to sample environmental chemicals for transduction in the vomeronasal chemosensory system (VNS). Based on several lines of empirical evidence, increased tongue forking (bifurcation) in snakes (and some lizard taxa) appears to enhance chemical trail-following abilities through tropotaxis (the simultaneous comparison of stimulus intensities on two sides of the body) and thus aids in prey location and mate searching in males. We predicted that male copperheads, Agkistrodon contortrix , a North American pitviper, should have more deeply forked tongues than females owing to male–male competition for priority-of-access to widely dispersed females during the mating seasons. We examined formalin-fixed, ethanol-preserved museum specimens of adult A. contortrix for sexual size dimorphism (SSD) of the tongue. Tongue dimensions showed differences indicative of SSD, and the degree of bifurcation (i.e. mean tine length) was significantly greater in males. Various structures of the VNS and associated regions (e.g. muscles) in some vertebrate taxa show sexual dimorphism, but our study is the first to document dimorphism in the tongue of a tetrapod vertebrate.  相似文献   

20.
Sexual size dimorphism (SSD), a difference in body size between sexes, is common in many taxa. In insects, females are larger than males in >70% of all taxa in most orders. The fruit fly, Drosophila melanogaster is one prominent model organism to investigate SSD since its clear and representative female-biased SSD and its growth regulation are well studied. Elucidating the number and nature of genetic elements that can potentially influence SSD would be helpful in understanding the evolutionary potential of SSD. Here, we investigated the SSD pattern caused by artificially introduced genetic variation in D. melanogaster, and examined whether variation in SSD was mediated by the sex-specific modification of developmental time. To map the genomic regions that had effects on sexual wing size and/or developmental time differences (SDtD), we reanalyzed previously published genome-wide deficiency mapping data to evaluate the effects of 376 isogenic deficiencies covering a total of ~67% of the genomic regions of the second and third chromosomes of D. melanogaster. We found genetic variation in SSD and SDtD generated by genomic deficiencies, and a negative genetic correlation between size and development time. We also found SSD and SDtD allometries that are not qualitatively congruent, which however overall at best only partly help in explaining the patterns found. We identified several genomic deficiencies with the tendency to either exaggerate or suppress SSD, in agreement with quantitative genetic null expectations of many loci with small effects. These novel findings contribute to a better understanding of the evolutionary potential of sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号