首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将我国分离的首株人H5N1亚型禽流感病毒A/Anhui/1/2005作为研究对象,扩增其HA和HA1基因片段并克隆至真核表达载体pStar,构建成真核表达质粒。通过Western blot和间接免疫荧光检测方法确认,构建的重组质粒在真核细胞中成功地表达了目的蛋白HA和HA1。将重组质粒免疫BALB/c小鼠,检测免疫后外周血中HA/HA1特异性抗体的效价,并比较HA和HA1的免疫原性。结果表明,重组质粒免疫后成功地诱导了体液免疫反应,且二者的血清抗体效价无显著性差异。  相似文献   

2.
目的比较H5N1禽流感病毒感染小鼠、恒河猴及食蟹猴急性期肺组织的病理学变化。方法在麻醉状态下对BALB/c小鼠、恒河猴及食蟹猴进行H5N1病毒滴鼻接种,在感染急性期实施安死术,取肺组织运用H&E结合免疫组化技术分析肺组织的病理变化。结果BALB/c小鼠感染急性期,肺组织以变质性炎为主,肺泡结构被广泛破坏,以单核细胞为主的炎细胞浸润,局部可见渗出性炎。而在恒河猴感染急性期肺组织病理改变以渗出性炎为主,同时可见变质性炎和增生性炎。在食蟹猴感染急性期肺组织病理改变以渗出性和变质性炎为主,同时亦可见上皮的新生。结论H5N1禽流感病毒感染小鼠与恒河猴、食蟹猴急性期肺组织的病理变化不同,这将为进一步认识禽流感的发病机制及研究针对性的治疗方法提供一些理论依据。  相似文献   

3.
目的:研究H1N1型流感病毒神经氨酸酶(NA)在原核系统中的表达、纯化方法及其免疫原性。方法:构建了大肠杆菌表达载体pET22b-NA,并转化了大肠杆菌BL21(DE3);通过SP-Sepharose Fast Flow柱对重组NA进行分离纯化,并用Sephadex G-25柱对SP柱后获得的NA进行柱上复性;用不同剂量的重组NA免疫BALB/c小鼠,并检测其诱导产生的抗体滴度。结果:大肠杆菌表达的NA以包涵体形式存在,通过分离及柱上复性,纯化得到重组NA;NA抗原的免疫原性是剂量依赖的,随着剂量的增加,其免疫原性相应增强,3次免疫后,3μg NA诱导小鼠产生的抗体滴度最高,为1∶7000。结论:大肠杆菌表达的NA具有一定的诱导小鼠产生针对天然NA的抗体的能力,为流感病毒基因工程疫苗研究提供了初步线索。  相似文献   

4.
Seasonal and pandemic strains of influenza have widespread implications for the global economy and global health. This has been highlighted recently as the epidemiologic characteristics for hospitalization and mortality for pandemic influenza H1N1 2009 are now emerging. While treatment with neuraminidase inhibitors are effective for seasonal and pandemic influenza, prevention of morbidity and mortality through effective vaccines requires a rigorous process of research and development. Vulnerable populations such as older adults (i.e., > age 65 years) suffer the greatest impact from seasonal influenza yet do not have a consistent seroprotective response to seasonal influenza vaccines due to a combination of factors. This short narrative review will highlight the emerging epidemiologic characteristics of pandemic H1N1 2009 and focus on immunosenescence, innate immune system responses to influenza virus infection and vaccination, and influenza vaccine responsiveness as it relates to seasonal and H1N1 pandemic influenza vaccines.  相似文献   

5.

Background & Aims

Individuals at risk of (H1N1) influenza A infection are recommended to receive vaccination. Chronic hepatitis C (CHC) patients receiving treatment might be at a higher risk of respiratory bacterial infections after influenza infection. However, there are no observational studies evaluating the immunogenicity, tolerance and acceptance of 2009 influenza A vaccine in CHC patients.

Methods

We evaluated the immunogenicity of influenza A vaccine (Pandemrix®) by using the hemagglutination inhibition (HI) titers method in a well defined cohort of CHC patients receiving or not receiving pegylated-interferon and ribavirin, and compared it with healthy subjects (controls). A group of patients with inflammatory bowel disease (IBD) under immunosuppression, thought to have a lower immune response to seasonal influenza vaccine, were also included as a negative control group. In addition, tolerance to injection site reactions and acceptance was assessed by a validated questionnaire (Vaccinees'' perception of injection-VAPI-questionnaire).

Results

Of 114 subjects invited to participate, 68% accepted and, after exclusions, 72 were included. Post-vaccination geometric mean titers and seroprotection/seroconversion rates were optimal in CHC patients with ongoing treatment (n = 15; 232, CI95% 46–1166; 93%; 93%), without treatment (n = 10; 226, CI95% 69–743: 100%; 100%) and controls (n = 15;168, CI95% 42–680; 93%; 86%) with no differences between groups (P = 0.8). In contrast, IBD patients had a significantly lower immunogenic response (n = 27; 60, CI95% 42–680;66%;66%; P = 0.006). All the groups showed a satisfactory tolerance although CHC patients with ongoing treatment showed more local discomfort after vaccine injection.

Conclusion

There appeared to be no differences between CHC patients and healthy controls in serological response and acceptance of (H1N1) influenza vaccination.  相似文献   

6.
In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.  相似文献   

7.
Identification of safe and effective adjuvants remains an urgent need for the development of inactivated influenza vaccines for mucosal administration. Here, we used a murine challenge model to evaluate the adjuvant activity of GPI-0100, a saponin-derived adjuvant, on influenza subunit vaccine administered via the intranasal or the intrapulmonary route. Balb/c mice were immunized with 1 µg A/PR/8 (H1N1) subunit antigen alone or in combination with varying doses of GPI-0100. The addition of GPI-0100 was required for induction of mucosal and systemic antibody responses to intranasally administered influenza vaccine and significantly enhanced the immunogenicity of vaccine administered via the intrapulmonary route. Remarkably, GPI-0100-adjuvanted influenza vaccine given at a low dose of 2×1 µg either in the nares or directly into the lungs provided complete protection against homologous influenza virus infection.  相似文献   

8.
为了研究 H5N1 DNA 疫苗对小鼠和鸡的保护效率,用 H5N1 禽流感病毒 HA DNA 疫苗免疫 BALB/c 小鼠和 SPF 鸡 . 小鼠和鸡分别经电穿孔和肌肉注射免疫两次,间隔为 3 周 . 二次免疫后,用致死量的同源病毒进行攻毒实验 . 空白对照组在攻毒后全部死亡,而经电穿孔免疫的小鼠和鸡均获得了完全的保护,并能有效地抑制病毒在小鼠肺脏和鸡泄殖腔的繁殖 . 同时,电穿孔免疫的小鼠和鸡均产生了高水平的特异性抗体 . 经电穿孔免疫的小鼠攻毒后 CTL 反应明显加强 . 这些结果表明, HA DNA 疫苗能有效地保护小鼠和鸡对禽流感病毒的感染,同时也表明电穿孔免疫是 DNA 疫苗免疫的有效途径之一 .  相似文献   

9.
CY Wu  YC Yeh  JT Chan  YC Yang  JR Yang  MT Liu  HS Wu  PW Hsiao 《PloS one》2012,7(8):e42363
The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA(2) after viral infection. As a result, H5M2eN1-VLP vaccination elicited a broad humoral immune response against multiple viral proteins and caused significant protection against homologous RG-14 (H5N1) and heterologous A/California/07/2009 H1N1 (CA/07) and A/PR/8/34 H1N1 (PR8) viral lethal challenges. Moreover, the N1-VLP (lacking HA) induced production of a strong NA antibody that also conferred significant cross protection against H5N1 and heterologous CA/07 but not PR8, suggesting the protection against N1-serotyped viruses can be extended from avian-origin to CA/07 strain isolated in humans, but not to evolutionally distant strains of human-derived. By comparative vaccine study of an HA-based VLP (H5N1-VLP) and NA-based VLPs, we found that H5N1-VLP vaccination induced specific and strong protective antibodies against the HA(1) subunit of H5, thus restricting the breadth of cross-protection. In summary, we present a feasible example of direction of VLP vaccine immunity toward NA and HA(2), which resulted in cross protection against both seasonal and pandemic influenza strains, that could form the basis for future design of a better universal vaccine.  相似文献   

10.
Vaccination against influenza is an important means of reducing morbidity and mortality in subjects at risk. The prevalent viral strains responsible for seasonal epidemics usually change annually, but the WHO recommendations for the 2011/2012-season in the Northern hemisphere included the same antigens as for the previous season.We conducted a single-center, single-arm study involving 62 younger (18–60 years) and 64 older (>60 years) adults to test the immunogenicity, safety and tolerability of a trivalent surface antigen, inactivated influenza vaccine produced in mammalian cell-culture. The vaccine contained 15 µg hemagglutinin of each of the virus strains recommended for the 2011–2012 Northern hemisphere winter season (A/California/7/09 (H1N1)-; A/Perth/16/09 (H3N2)-; B/Brisbane/60/08-like strain) in a non-adjuvanted preservative-free formulation. Antibody response was measured by hemagglutination inhibition 21 days after immunization. Adverse events and safety were assessed using subject diary cards and telephone interviews.Seroconversion or a 4-fold antibody increase in antibody titers was detectable against A(H1N1) in 68% of both younger and older adults, against A(H3N2) in 53% and 27%, and against the B influenza strain in 35% and 17%. Antibody titers of 40 or more were observed against A(H1N1) in 87% and 90% of younger and older adults, against A(H3N2) in 98% and 98%, and against the B influenza strain in 93% and 90%. Pre-vaccination antibody titers were protective against A(H1N1), A(H3N2) and B in 38%, 58% and 58%, respectively, of younger and in 43%, 88% and 70% of older adults. Among subjects with previous A(H1N1) vaccination only 48% of younger and 47% of older adults had protective A(H1N1) antibodies at inclusion. Adverse reactions were generally mild. The most frequently reported reactions were pain at the injection site, myalgia and fatigue.The vaccine generated protective antibodies against all three viral strains and had an acceptable safety profile in both younger and older adults.

Trial Registration

ClinicalTrials.gov NCT01422512  相似文献   

11.
糖尿病患者免疫功能低下,是流感病毒感染的高危人群.研制有效的流感病毒疫苗对糖尿病患者尤为重要.以注射STZ的方法建立糖尿病小鼠模型,比较糖尿病小鼠和健康小鼠对H5N1病毒易感性的差异.病毒感染3 d后糖尿病小鼠的肺部病毒滴度比健康小鼠高,显示糖尿病小鼠对H5N1病毒更易感.用一次免疫的方法接种不同剂量的H5N1灭活疫苗(单独免疫或与佐剂共同免疫),比较其在糖尿病小鼠和健康小鼠诱导抗体应答的能力.一次免疫H5N1流感病毒灭活疫苗可诱导糖尿病小鼠产生体液免疫应答,但其抗体量低于健康小鼠,增加疫苗剂量可提高抗体水平.佐剂能增强H5N1全病毒灭活疫苗在糖尿病小鼠体内诱导的抗体反应.  相似文献   

12.

Introduction

Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness.

Methods

VE against influenza and/or pneumonia was assessed in the cohort study (n>25000), and vaccine effectiveness against laboratory-confirmed A(H1N1)pdm09 influenza was assessed in a matched case-control study (16 pairs). Odds ratios (OR) and their 95% confidence intervals (95% CI) were calculated by using multivariate logistic regression; vaccine effectiveness was estimated as (1-odds ratio)*100%.

Results

Vaccine effectiveness against laboratory-confirmed A(H1N1)pdm09 influenza and influenza and/or pneumonia was 98% (84–100%) and 33% (2–54%) respectively. The vaccine did not prevent influenza and/or pneumonia in 18–59 years old subjects, and was 49% (16–69%) effective in 60 years and older subjects.

Conclusions

Even though we cannot entirely rule out that selection bias, residual confounding and/or cross-protection has played a role, the present results indicate that the MF59-adjuvanted A(H1N1)pdm09 influenza vaccine has been effective in preventing laboratory-confirmed A(H1N1)pdm09 influenza and influenza and/or pneumonia, the latter notably in 60 years and older subjects.  相似文献   

13.
The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs), have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans.  相似文献   

14.
Influenza infections have high frequency and morbidity in HIV-infected pregnant women, underscoring the importance of vaccine-conferred protection. To identify the factors that determine vaccine immunogenicity in this group, we characterized the relationship of B- and T-cell responses to pandemic H1N1 (pH1N1) vaccine with HIV-associated immunologic and virologic characteristics.pH1N1 and seasonal-H1N1 (sH1N1) antibodies were measured in 119 HIV-infected pregnant women after two double-strength pH1N1 vaccine doses. pH1N1-IgG and IgA B-cell FluoroSpot, pH1N1- and sH1N1-interferon γ (IFNγ) and granzyme B (GrB) T-cell FluoroSpot, and flow cytometric characterization of B- and T-cell subsets were performed in 57 subjects.pH1N1-antibodies increased after vaccination, but less than previously described in healthy adults. pH1N1-IgG memory B cells (Bmem) increased, IFNγ-effector T-cells (Teff) decreased, and IgA Bmem and GrB Teff did not change. pH1N1-antibodies and Teff were significantly correlated with each other and with sH1N1-HAI and Teff, respectively, before and after vaccination. pH1N1-antibody responses to the vaccine significantly increased with high proportions of CD4+, low CD8+ and low CD8+HLADR+CD38+ activated (Tact) cells. pH1N1-IgG Bmem responses increased with high proportions of CD19+CD27+CD21- activated B cells (Bact), high CD8+CD39+ regulatory T cells (Treg), and low CD19+CD27-CD21- exhausted B cells (Bexhaust). IFNγ-Teff responses increased with low HIV plasma RNA, CD8+HLADR+CD38+ Tact, CD4+FoxP3+ Treg and CD19+IL10+ Breg.In conclusion, pre-existing antibody and Teff responses to sH1N1 were associated with increased responses to pH1N1 vaccination in HIV-infected pregnant women suggesting an important role for heterosubtypic immunologic memory. High CD4+% T cells were associated with increased, whereas high HIV replication, Tact and Bexhaust were associated with decreased vaccine immunogenicity. High Treg increased antibody responses but decreased Teff responses to the vaccine. The proportions of immature and transitional B cells did not affect the responses to vaccine. Increased Bact were associated with high Bmem responses to the vaccine.  相似文献   

15.
16.
Xing  Lei  Chen  Yunbo  Chen  Boqian  Bu  Ling  Liu  Ying  Zeng  Zhiqi  Guan  Wenda  Chen  Qigao  Lin  Yongping  Qin  Kun  Chen  Honglin  Deng  Xilong  Wang  Xinhua  Song  Wenjun 《中国病毒学》2021,36(5):1220-1227
Virologica Sinica - The influenza A (H1N1) pdm09 virus emerged in 2009 and has been continuously circulating in humans for over ten years. Here, we analyzed a clinical influenza A (H1N1)...  相似文献   

17.
The design of optimized nanoparticles offers a promising strategy to enable DNA vaccines to cross various physiological barriers for eliciting a specific and protective mucosal immunity via intranasal administration. Here, we reported a new designed nanoparticle system through incorporating anionic liposomes (AL) into chitosan/DNA (CS/DNA) complexes. With enhanced cellular uptake, the constructed AL/CS/DNA nanoparticles can deliver the anti-caries DNA vaccine pGJA-P/VAX into nasal mucosa. TEM results showed the AL/CS/DNA had a spherical structure. High DNA loading ability and effective DNA protection against nuclease were proved by gel electrophoresis. The surface charge of the AL/CS/DNA depended strongly on pH environment, enabling the intracellular release of loaded DNA via a pH-mediated manner. In comparison to the traditional CS/DNA system, our new design rendered a higher transfection efficiency and longer residence time of the AL/CS/DNA at nasal mucosal surface. These outstanding features enable the AL/CS/DNA to induce a significantly (p<0.01) higher level of secretory IgA (SIgA) than the CS/DNA in animal study, and a longer-term mucosal immunity. On the other hand, the AL/CS/DNA exhibited minimal cytotoxicity. These results suggest that the developed nanoparticles offer a potential platform for DNA vaccine packaging and delivery for more efficient elicitation of mucosal immunity.  相似文献   

18.
The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8+ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.  相似文献   

19.
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.  相似文献   

20.
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号