首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set.In the past two decades, proteomics was dominated by bottom-up mass spectrometry that analyzes digested peptides rather than intact proteins. Bottom-up approaches, although powerful, do have limitations in analyzing protein species, e.g. various proteolytic forms of the same protein or various protein isoforms resulting from alternative splicing. Top-down mass spectrometry focuses on analyzing intact proteins and large peptides (110) and has advantages in localizing multiple post-translational modifications (PTMs)1 in a coordinated fashion (e.g. combinatorial PTM code) and identifying multiple protein species (e.g. proteolytically processed protein species) (11). Until recently, most top-down studies were limited to single purified proteins (1215). Top-down studies of protein mixtures were restricted by difficulties in separating and fragmenting intact proteins and a shortage of robust computational tools.In the last two years, because of advances in protein separation and top-down instrumentation, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples containing hundreds and even thousands of proteins (1621). Because algorithms for interpreting top-down spectra are still in their infancy, many recent developments include computational innovations in protein identification.Because top-down spectra are complex, the first step in top-down spectral interpretation is usually spectral deconvolution, which converts a complex top-down spectrum to a list of monoisotopic masses (a deconvolved spectrum). Every protein (possibly with modifications) can be scored against a top-down deconvoluted spectrum, resulting in a Protein-Spectrum-Match (PrSM). The top-down protein identification problem is finding a protein in a database with the highest scoring PrSM for a top-down spectrum and further output the PrSM if it is statistically significant. There are several software tools for top-down protein identification (
SoftwareIdentification of unexpected modificationsProteogenomics search against 6-frame translationSpeedEstimation of statistical significance
ProSightPC+/−a+Fast/Slowb+
PIITA+/−Fast
UStag++Fast
MS-TopDown+Slow
MS-Align+++Fast+
Open in a separate windowa ProSightPC has various search modes that contribute to bridging the gap between blind and restrictive modes of MS/MS database search. It can identify truncated proteins by using biomarker search and identify unexpected modifications by using Δm mode and setting the error tolerance of precursor mass to a large value (e.g., 1999 Da). However, it is not designed for identifying truncated proteins with unexpected PTMs which are not represented in the “shotgun annotated” database.b In its most advances mode, ProSightPC can search the annotated top-down database that contains various protein species. However, ProSightPC searches in this mode become an order of magnitude slower.We describe MS-Align+, a fast software tool for top-down protein identification. MS-Align+ shares the spectral alignment approach with MS-TopDown, but greatly improves on speed, statistical analysis (providing E-values of PrSMs), and the number of identified PrSMs (e.g. by finding spectral alignments between spectra and truncated proteins). We benchmarked various tools for top-down protein identification on two data sets from Saccharomyces cerevisiae (SC) and Salmonella typhimurium (ST). We demonstrate that MS-Align+ significantly increase the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the ST data set, MS-Align+ outperforms ProSightPC on the more complex SC data set.  相似文献   

3.
Disease Mutations in the Human Mitochondrial DNA Polymerase Thumb Subdomain Impart Severe Defects in Mitochondrial DNA Replication     
Rajesh Kasiviswanathan  Matthew J. Longley  Sherine S. L. Chan    William C. Copeland 《The Journal of biological chemistry》2009,284(29):19501-19510
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol γ), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol γ revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g→t and T885S, c.2653a→t). Biochemical characterization of purified, recombinant forms of pol γ revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50–70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol γ accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol γ and examines the consequences of mitochondrial disease mutations in this region.As the only DNA polymerase found in animal cell mitochondria, DNA polymerase γ (pol γ)3 bears sole responsibility for DNA synthesis in all replication and repair transactions involving mitochondrial DNA (1, 2). Mammalian cell pol γ is a heterotrimeric complex composed of one catalytic subunit of 140 kDa (p140) and two 55-kDa accessory subunits (p55) that form a dimer (3). The catalytic subunit contains an N-terminal exonuclease domain connected by a linker region to a C-terminal polymerase domain. Whereas the exonuclease domain contains essential motifs I, II, and III for its activity, the polymerase domain comprising the thumb, palm, and finger subdomains contains motifs A, B, and C that are crucial for polymerase activity. The catalytic subunit is a family A DNA polymerase that includes bacterial pol I and T7 DNA polymerase and possesses DNA polymerase, 3′ → 5′ exonuclease, and 5′-deoxyribose phosphate lyase activities (for review, see Refs. 1 and 2). The 55-kDa accessory subunit (p55) confers processive DNA synthesis and tight binding of the pol γ complex to DNA (4, 5).Depletion of mtDNA as well as the accumulation of deletions and point mutations in mtDNA have been observed in several mitochondrial disorders (for review, see Ref. 6). mtDNA depletion syndromes are caused by defects in nuclear genes responsible for replication and maintenance of the mitochondrial genome (7). Mutation of POLG, the gene encoding the catalytic subunit of pol γ, is frequently involved in disorders linked to mutagenesis of mtDNA (8, 9). Presently, more than 150 point mutations in POLG are linked with a wide variety of mitochondrial diseases, including the autosomal dominant (ad) and recessive forms of progressive external ophthalmoplegia (PEO), Alpers syndrome, parkinsonism, ataxia-neuropathy syndromes, and male infertility (tools.niehs.nih.gov/polg) (9).Alpers syndrome, a hepatocerebral mtDNA depletion disorder, and myocerebrohepatopathy are rare heritable autosomal recessive diseases primarily affecting young children (1012). These diseases generally manifest during the first few weeks to years of life, and symptoms gradually develop in a stepwise manner eventually leading to death. Alpers syndrome is characterized by refractory seizures, psychomotor regression, and hepatic failure (11, 12). Mutation of POLG was first linked to Alpers syndrome in 2004 (13), and to date 45 different point mutations in POLG (18 localized to the polymerase domain) are associated with Alpers syndrome (9, 14, 15). However, only two Alpers mutations (A467T and W748S, both in the linker region) have been biochemically characterized (16, 17).During the initial cloning and sequencing of the human, Drosophila, and chicken pol γ genes, we noted a highly conserved region N-terminal to motif A in the polymerase domain that was specific to pol γ (18). This region corresponds to part of the thumb subdomain that tracks DNA into the active site of both Escherichia coli pol I and T7 DNA polymerase (1921). A high concentration of disease mutations, many associated with Alpers syndrome, is found in the thumb subdomain.Here we investigated six mitochondrial disease mutations clustered in the N-terminal portion of the polymerase domain of the enzyme (Fig. 1A). Four mutations (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) reside in the thumb subdomain and two (Q879H, c.2637g→t and T885S, c.2653a→t) are located in the palm subdomain. These mutations are associated with Alpers, PEO, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), ataxia-neuropathy syndrome, Leigh syndrome, and myocerebrohepatopathy (POLG mutationDiseaseGeneticsReferenceG848SAlpers syndromeIn trans with A467T, Q497H, T251I-P587L, or W748S-E1143G in Alpers syndrome15, 35, 4350Leigh syndromeIn trans with R232H in Leigh syndrome49MELASIn trans with R627Q in MELAS38PEO with ataxia-neuropathyIn trans with G746S and E1143G in PEO with ataxia50PEOIn trans with T251I and P587L in PEO51, 52T851AAlpers syndromeIn trans with R1047W48, 53In trans with H277CR852CAlpers syndromeIn trans with A467T14, 48, 50In cis with G11D and in trans with W748S-E1143G or A467TAtaxia-neuropathyIn trans with G11D-R627Q15R853QMyocerebrohepatopathyIn trans with T251I-P587L15Q879HAlpers syndrome with valproate-induced hepatic failureIn cis with E1143G and in trans with A467T-T885S35, 54T885SAlpers syndrome with valproate-induced hepatic failureIn cis with A467T and in trans with Q879H-E1143G35, 54Open in a separate windowOpen in a separate windowFIGURE 1.POLG mutations characterized in this study. A, the location of the six mutations characterized is shown in red in the primary sequence of pol γ. Four mutations, the G848S, T851A, R852C, and R853Q, are located in the thumb domain, whereas two mutations, the Q879H and T885S, are in the palm domain of the polymerase region. B, sequence alignment of pol γ from yeast to humans. The amino acids characterized in this study are shown in red. Yellow-highlighted amino acids are highly conserved, and blue-highlighted amino acids are moderately conserved.  相似文献   

4.
Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin     
Dirk Konz  Sascha Doekel  Mohamed A. Marahiel 《Journal of bacteriology》1999,181(1):133-140
Lichenysins are surface-active lipopeptides with antibiotic properties produced nonribosomally by several strains of Bacillus licheniformis. Here, we report the cloning and sequencing of an entire 26.6-kb lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Three large open reading frames coding for peptide synthetases, designated licA, licB (three modules each), and licC (one module), could be detected, followed by a gene, licTE, coding for a thioesterase-like protein. The domain structure of the seven identified modules, which resembles that of the surfactin synthetases SrfA-A to -C, showed two epimerization domains attached to the third and sixth modules. The substrate specificity of the first, fifth, and seventh recombinant adenylation domains of LicA to -C (cloned and expressed in Escherichia coli) was determined to be Gln, Asp, and Ile (with minor Val and Leu substitutions), respectively. Therefore, we suppose that the identified biosynthesis operon is responsible for the production of a lichenysin variant with the primary amino acid sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile, with minor Leu and Val substitutions at the seventh position.Many strains of Bacillus are known to produce lipopeptides with remarkable surface-active properties (11). The most prominent of these powerful lipopeptides is surfactin from Bacillus subtilis (1). Surfactin is an acylated cyclic heptapeptide that reduces the surface tension of water from 72 to 27 mN m−1 even in a concentration below 0.05% and shows some antibacterial and antifungal activities (1). Some B. subtilis strains are also known to produce other, structurally related lipoheptapeptides (Table (Table1),1), like iturin (32, 34) and bacillomycin (3, 27, 30), or the lipodecapeptides fengycin (50) and plipastatin (29).

TABLE 1

Lipoheptapeptide antibiotics of Bacillus spp.
LipopeptideOrganismStructureReference
Lichenysin AB. licheniformisFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asn-D-Leu-L-Ile51, 52
Lichenysin BFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu23, 26
Lichenysin CFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Ile17
Lichenysin DFAa-L-Gln-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-IleThis work
Surfactant 86B. licheniformisFAa-L-Glxd-L-Leu-D-Leu-L-Val-L-Asxd-D-Leu-L-Ilee14, 15
L-Val
SurfactinB. subtilisFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu1, 7, 49
EsperinB. subtilisFAb-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leue45
L-Val 
Iturin AB. subtilisFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Ser32
Iturin CFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asne-L-Asne34
D-Ser-L-Thr 
Bacillomycin LB. subtilisFAc-L-Asp-D-Tyr-D-Asn-L-Ser-L-Gln-D-Proe-L-Thr3
D-Ser- 
Bacillomycin DFAc-L-Asp-D-Tyr-D-Asn-L-Pro-L-Glu-D-Ser-L-Thr30, 31
Bacillomycin FFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Thr27
Open in a separate windowaFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of the C-terminal amino acid. bFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of Asp5. cFA, β-amino fatty acid. The β-amino group forms a peptide bond with the carboxy group of the C-terminal amino acid. dOnly the following combinations of amino acid 1 and 5 are allowed: Gln-Asp or Glu-Asn. eWhere an alternative amino acid may be present in a structure, the alternative is also presented. In addition to B. subtilis, several strains of Bacillus licheniformis have been described as producing the lipopeptide lichenysin (14, 17, 23, 26, 51). Lichenysins can be grouped under the general sequence l-Glx–l-Leu–d-Leu–l-Val–l-Asx–d-Leu–l-Ile/Leu/Val (Table (Table1).1). The first amino acid is connected to a β-hydroxyl fatty acid, and the carboxy-terminal amino acid forms a lactone ring to the β-OH group of the lipophilic part of the molecule. In contrast to the lipopeptide surfactin, lichenysins seem to be synthesized during growth under aerobic and anaerobic conditions (16, 51). The isolation of lichenysins from cells growing on liquid mineral salt medium on glucose or sucrose basic has been studied intensively. Antimicrobial properties and the ability to reduce the surface tension of water have also been described (14, 17, 26, 51). The structural elucidation of the compounds revealed slight differences, depending on the producer strain. Various distributions of branched and linear fatty acid moieties of diverse lengths and amino acid variations in three defined positions have been identified (Table (Table11).In contrast to the well-defined methods for isolation and structural characterization of lichenysins, little is known about the biosynthetic mechanisms of lichenysin production. The structural similarity of lichenysins and surfactin suggests that the peptide moiety is produced nonribosomally by multifunctional peptide synthetases (7, 13, 25, 49, 53). Peptide synthetases from bacterial and fungal sources describe an alternative route in peptide bond formation in addition to the ubiquitous ribosomal pathway. Here, large multienzyme complexes affect the ordered recognition, activation, and linking of amino acids by utilizing the thiotemplate mechanism (19, 24, 25). According to this model, peptide synthetases activate their substrate amino acids as aminoacyl adenylates by ATP hydrolysis. These unstable intermediates are subsequently transferred to a covalently enzyme-bound 4′-phosphopantetheinyl cofactor as thioesters. The thioesterified amino acids are then integrated into the peptide product through a stepwise elongation by a series of transpeptidations directed from the amino terminals to the carboxy terminals. Peptide synthetases have not only awakened interest because of their mechanistic features; many of the nonribosomally processed peptide products also possess important biological and medical properties.In this report we describe the identification and characterization of a putative lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Cloning and sequencing of the entire lic operon (26.6 kb) revealed three genes, licA, licB, and licC, with structural patterns common to peptide synthetases and a gene designated licTE, which codes for a putative thioesterase. The modular organization of the sequenced genes resembles the requirements for the biosynthesis of the heptapeptide lichenysin. Based on the arrangement of the seven identified modules and the tested substrate specificities, we propose that the identified genes are involved in the nonribosomal synthesis of the portion of the lichenysin peptide with the primary sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile (with minor Val and Leu substitutions).  相似文献   

5.
Evidence for a New Avian Paramyxovirus Serotype 10 Detected in Rockhopper Penguins from the Falkland Islands     
Patti J. Miller  Claudio L. Afonso  Erica Spackman  Melissa A. Scott  Janice C. Pedersen  Dennis A. Senne  Justin D. Brown  Chad M. Fuller  Marcela M. Uhart  William B. Karesh  Ian H. Brown  Dennis J. Alexander  David E. Swayne 《Journal of virology》2010,84(21):11496-11504
The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.Viruses from the Paramyxoviridae family have caused disease in humans and animals for centuries. Over the last 40 years, many paramyxoviruses isolated from animals and people have been newly described (16, 17, 22, 29, 31, 32, 36, 42, 44, 46, 49, 58, 59, 62-64). Viruses from this family are pleomorphic, enveloped, single-stranded, nonsegmented, negative-sense RNA viruses that demonstrate serological cross-reactivity with other paramyxoviruses related to them (30, 46). The subfamily Paramyxovirinae is divided into five genera: Respirovirus, Morbillivirus, Rubulavirus, Henipavirus, and Avulavirus (30). The Avulavirus genus contains nine distinct avian paramyxovirus (APMV) serotypes (Table (Table1),1), and information on the discovery of each has been reported elsewhere (4, 6, 7, 9, 12, 34, 41, 50, 51, 60, 68).

TABLE 1.

Characteristics of prototype viruses APMV1 to APMV9 and the penguin virus
StrainHostDiseaseDistributionFusion cleavagecGI accession no.
APMV1/Newcastle disease virus>250 speciesHigh mortalityWorldwideGRRQKRF45511218
InapparentWorldwideGGRQGRLa11545722
APMV2/Chicken/CA/Yucaipa/1956Turkey, chickens, psittacines, rails, passerinesDecrease in egg production and respiratory diseaseWorldwideDKPASRF169144527
APMV3/Turkey/WI/1968TurkeyMild respiratory disease and moderate egg decreaseWorldwidePRPSGRLa209484147
APMV3/Parakeet/Netherlands/449/1975Psittacines, passerines, flamingosNeurological, enteric, and respiratory diseaseWorldwideARPRGRLa171472314
APMV4/Duck/Hong Kong/D3/1975Duck, geese, chickensNone knownWorldwideVDIQPRF210076708
APMV5/Budgerigar/Japan/Kunitachi/1974Budgerigars, lorikeetsHigh mortality, enteric diseaseJapan, United Kingdom, AustraliaGKRKKRFa290563909
APMV6/Duck/Hong Kong/199/1977Ducks, geese, turkeysMild respiratory disease and increased mortality in turkeysWorldwidePAPEPRLb15081567
APMV7/Dove/TN/4/1975Pigeons, doves, turkeysMild respiratory disease in turkeysUnited States, England, JapanTLPSSRF224979458
APMV8/Goose/DE/1053/1976Ducks, geeseNone knownUnited States, JapanTYPQTRLa226343050
APMV9/Duck/NY/22/1978DucksNone knownWorldwideRIREGRIa217068693
APMV10/Penguin/Falkland Islands/324/2007Rockhopper penguinsNone KnownFalkland IslandsDKPSQRIa300432141
Open in a separate windowaRequires the addition of an exogenous protease.bProtease requirement depends on the isolate examined.cPutative.Six of these serotypes were classified in the latter half of the 1970s, when the most reliable assay available to classify paramyxoviruses was the hemagglutination inhibition (HI) assay (61). However, there are multiple problems associated with the use of serology, including the inability to classify some APMVs by comparing them to the sera of the nine defined APMVs alone (2, 8). In addition, one-way antigenicity and cross-reactivity between different serotypes have been documented for many years (4, 5, 14, 25, 29, 33, 34, 41, 51, 52, 60). The ability of APMVs, like other viruses, to show antigenic drift as it evolves over time (37, 43, 54) and the wide use and availability of precise molecular methods, such as PCR and genome sequencing, demonstrate the need for a more practical classification system.The genetic diversity of APMVs is still largely unexplored, as hundreds of avian species have never been surveyed for the presence of viruses that do not cause significant signs of disease or are not economically important. The emergence of H5N1 highly pathogenic avian influenza (HPAI) virus as the cause of the largest outbreak of a virulent virus in poultry in the past 100 years has spurred the development of surveillance programs to better understand the ecology of avian influenza (AI) viruses in aquatic birds around the globe, and in some instances it has provided opportunities for observing other viruses in wild bird populations (15, 53). In 2007, as part of a seabird health surveillance program in the Falkland Islands (Islas Malvinas), oral and cloacal swabs and serum were collected from rockhopper penguins (Eudyptes chrysocome) and environmental/fecal swab pools were collected from other seabirds.While AI virus has not yet been isolated from penguins in the sub-Antarctic and Antarctic areas, there have been two reports of serum antibodies positive to H7 and H10 from the Adélie species (11, 40). Rare isolations of APMV1, both virulent (45) and of low virulence (8), have been reported from Antarctic penguins. Sera positive for APMV1 and AMPV2 have also been reported (21, 24, 38, 40, 53). Since 1981, paramyxoviruses have been isolated from king penguins (Aptenodytes patagonicus), royal penguins (Eudyptes schlegeli), and Adélie penguins (Pygoscelis adeliae) from Antarctica and little blue penguins (Eudyptula minor) from Australia that cannot be identified as belonging to APMV1 to -9 and have not yet been classified (8, 11, 38-40). The morphology, biological and genomic characteristics, and antigenic relatedness of an APMV recently isolated from multiple penguin colonies on the Falkland Islands are reported here. Evidence that the virus belongs to a new serotype (APMV10) and a demonstration of the advantages of a whole genome system of analysis based on random sequencing followed by comparison of genetic distances are presented. Only after all APMVs are reported and classified will epidemiological information be known as to how the viruses are moving and spreading as the birds travel and interact with other avian species.  相似文献   

6.
A Systematic Proteomic Analysis of Listeria monocytogenes House-keeping Protein Secretion Systems     
Sven Halbedel  Swantje Reiss  Birgit Hahn  Dirk Albrecht  Gopala Krishna Mannala  Trinad Chakraborty  Torsten Hain  Susanne Engelmann  Antje Flieger 《Molecular & cellular proteomics : MCP》2014,13(11):3063-3081
  相似文献   

7.
A Targeted Multilocus Genotyping Assay for Lineage,Serogroup, and Epidemic Clone Typing of Listeria monocytogenes     
Todd J. Ward  Thomas Usgaard  Peter Evans 《Applied and environmental microbiology》2010,76(19):6680-6684
A 30-probe assay was developed for simultaneous classification of Listeria monocytogenes isolates by lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (EC) type (ECI, ECIa, ECII, and ECIII). The assay was designed to facilitate rapid strain characterization and the integration of subtype data into risk-based inspection programs.Listeria monocytogenes is a facultative intracellular pathogen that can cause serious invasive illness (listeriosis) in humans and other animals. L. monocytogenes is responsible for over 25% of food-borne-disease-related deaths attributable to known pathogens and is a leading cause of food recalls due to microbial adulteration (12, 21). However, not all L. monocytogenes subtypes contribute equally to human illness, and substantial differences in the ecologies and virulence attributes of different L. monocytogenes subtypes have been identified (9, 13, 14, 23, 24, 33, 35, 36). Among the four major evolutionary lineages of L. monocytogenes, only lineages I and II are commonly isolated from contaminated food and human listeriosis patients (19, 27, 29, 33). Lineage I strains are overrepresented among human listeriosis isolates, particularly those associated with epidemic outbreaks, whereas lineage II strains are overrepresented in foods and the environment (13, 14, 24). Lineage III strains account for approximately 1% of human listeriosis cases but are common among animal listeriosis isolates and appear to be a host-adapted group that is poorly adapted to food-processing environments (6, 34-36). The ecological and virulence attributes of lineage IV are poorly understood, as this lineage is rare and was only recently described based on a small number of strains (19, 26, 29, 33).L. monocytogenes is differentiated into 13 serotypes; however, four major serogroups (4b, 1/2b, 1/2a, and 1/2c) from within lineages I and II account for more than 98% of human and food isolates (16, 31). Serogroups refer to evolutionary complexes typified by a predominant serotype but which include very rare serotypes that represent minor evolutionary variants (7, 9, 33). Phylogenetic analyses have indicated that rare serotypes may have evolved recently, or even multiple times, from one of the major serotypes (9), and numerous molecular methods fail to discriminate minor serotypes as independent groups (1, 4, 7, 9, 18, 22, 33, 38, 39). Serotyping is one of the most common methods for L. monocytogenes subtyping, and serogroup classifications are a useful component of strain characterization because ecotype divisions appear largely congruent with serogroup distinctions (16, 34). Serogroup 4b strains are of particular public health concern because contamination with these strains appears to increase the probability that a ready-to-eat (RTE) food will be implicated in listeriosis (16, 28). Serogroup 4b strains account for approximately 40% of sporadic listeriosis and also are responsible for the majority of listeriosis outbreaks despite being relatively rare contaminants of food products (9, 13, 17, 30, 34). In addition, serogroup 4b strains are associated with more severe clinical presentations and higher mortality rates than other serogroups (11, 16, 20, 31, 34). Serogroups 1/2a and 1/2b are overrepresented among food isolates but also contribute significantly to human listeriosis, whereas serogroup 1/2c rarely causes human illness and may pose a lower risk of listeriosis for humans (16). Serogroup-specific differences in association with human listeriosis are consistent with the prevalence of virulence-attenuating mutations in inlA within these serogroups (32, 34); however, a number of additional factors likely contribute to these differences.Four previously described epidemic clones (ECs; ECI, ECIa, ECII, and ECIII) of L. monocytogenes have been implicated in numerous listeriosis outbreaks and have contributed significantly to sporadic illness (15, 34). ECI, ECIa, and ECII are distinct groups within serogroup 4b that were each responsible for repeated outbreaks of listeriosis in the United States and Europe. ECIII is a lineage II clone of serotype 1/2a that persisted in the same processing facility for more than a decade prior to causing a multistate outbreak linked to contaminated turkey (15, 25). While there has been speculation that epidemic clones possess unique adaptations that explain their frequent involvement in listeriosis outbreaks (9, 34, 37), it is not clear that epidemic clones are more virulent than other strains with the same serotype. However, contamination of RTE food with EC strains would be cause for increased concern due to the previous involvement of these clones in major outbreaks of listeriosis (16).As a result of the L. monocytogenes subtype-specific differences in ecology, virulence, and association with human illness, molecular subtyping technologies have the potential to inform assessments of relative risk and to improve risk-based inspection programs. The objective of the present study was to develop a single assay for rapid and accurate classification of L. monocytogenes isolates by lineage, major serogroup, and epidemic clone in order to facilitate strain characterization and the integration of subtype data into inspection programs that are based on assessment of relative risk.A database of more than 5.3 Mb of comparative DNA sequences from 238 L. monocytogenes isolates (9, 33-35) was scanned for single nucleotide polymorphisms that could be used to differentiate lineages, major serogroups, and epidemic clones via a targeted multilocus genotyping (TMLGT) approach. The acronym TMLGT is used to distinguish this approach from previously published multilocus genotyping (MLGT) assays that were lineage specific and designed for haplotype discrimination (9, 33). To provide for simultaneous interrogation of the selected polymorphisms via TMLGT, six genomic regions (Table (Table1)1) were coamplified in a multiplex PCR. While the previous MLGT assays were based on three lineage-specific multiplexes and required prior identification of lineage identity, TMLGT was designed to target variation across all of the lineages simultaneously and is based on a unique set of amplicons. PCR was performed in 50-μl volumes with 1× High Fidelity PCR buffer (Invitrogen Life Technologies), 2 mM MgSO4, 100 μM deoxynucleoside triphosphate (dNTP), 300 nM primer, 1.5 U Platinum Taq high-fidelity DNA polymerase (Invitrogen Life Technologies), and 100 ng of genomic DNA. PCR consisted of an initial denaturation of 90 s at 96°C, followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, and 90 s at 68°C. Amplification products were purified using Montage PCR cleanup filter plates (Millipore) and served as a template for allele-specific primer extension (ASPE) reactions utilizing subtype-specific probes.

TABLE 1.

Primers used in multiplex amplification for the TMLGT assay
AmpliconPositionaGene(s)PrimerSequence (5′-3′)b
INLa455381-456505inlAinl2-a1GTCCTTGATAGTCTACTG
inl2-a2ACCAAATTAGTAATCTAGCAC
INLb457726-458752inlBinl-f1dGAATTRTTTAGYCAAGAATGT
inlb-rCTACCGGRACTTTATAGTAYG
LMO325116-326096lmo0298-lmo0300lmo-a1AAGGCTTACAAGATGGCT
lmo1a-1rAAATAATAYGTGATACCGAC
VGCa205366-206622plcA, hlyplca-fCTCATCGTATCRTGTGTACC
hly-rTCTGGAAGGTCKTGTAGGTTC
VGCb208447-209465mplra_mpl-fGTGGAYAGAACTCATAAAGG
ra_mpl-rACTCCCTCCTYGTGATASGCT
VGCc209728-211239actAvgc1a-2fTTCMATRCCAGCAGAACG
vgc1a-2rGCAGACCTAATAGCAATGTTG
Open in a separate windowaCorresponding nucleotide positions in the complete genome sequence of L. monocytogenes strain EGD-e (GenBank accession number NC_003210).bSee IUPAC codes for definition of degenerate bases.ASPE was performed in multiplex reactions including 30 probes, with each lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (ECI, ECIa, ECII, and ECIII) targeted by two different probes (Table (Table2).2). In addition, positive-control probes were included to confirm the presence of each amplicon in the multiplex PCR. As serogroups and epidemic clones are nested within a particular lineage, probes for these groups were designed to be specific within the appropriate lineage and values for these probes were evaluated only for isolates of the appropriate lineage. For example, serogroup 1/2a probes were evaluated only for isolates that were positive for lineage II probes. ASPE probes were designed with a unique 5′ sequence tag specific to individual sets of xMAP fluorescent polystyrene microspheres (Luminex Corporation) used to sort extension products. Extension and hybridization reactions were performed as described previously (9) except microspheres were twice pelleted by centrifugation (4 min at 2,250 × g) and resuspended in 75 μl 1× TM buffer prior to being pelleted and resuspended in 100 μl 1× TM buffer containing 2 μg/ml streptavidin-R-phycoerythrin (Invitrogen Life Technologies). Samples were incubated for 15 min at 37°C prior to detecting the microsphere complexes with a Luminex 100 flow cytometer (Luminex Corporation). The median fluorescence intensity (MFI) from biotinylated extension products attached to 100 microspheres was measured for each probe. The average MFI from three template-free control samples was also determined and subtracted from the raw MFI of each sample to account for background fluorescence. Probe performance was initially evaluated via the index of discrimination (ID) as described by Ducey et al. (9), and probes with ID values less than 2.0 were redesigned.

TABLE 2.

TMLGT probes and probe performance data
ProbebTarget (n)cProbe sequencedIDeSensitivity (%)Specificity (%)
VGCb-21Lineage I (506)AATCCTTTCTTTAATCTCAAATCAgcggaagcttgggaagcggtc7.3100100
VGCa-94Lineage ICTTTCTATCTTTCTACTCAATAATcaacccgatgttcttcctgtc51.7100100
VGCc-8Lineage II (340)AATCCTTTTACATTCATTACTTACattagctgattcgctttcct14.1100100
INLb-51Lineage IITCATTTCAATCAATCATCAACAATagcgccaataaagctggc21.9100100
VGCb-19Lineage III (50)TCAATCAATTACTTACTCAAATACccgctattaaaatgtactcca31.0100100
VGCb-29Lineage IIIAATCTTACTACAAATCCTTTCTTTggtataccgctattaaaatgt45.1100100
LMO-17Lineage IV (10)CTTTAATCCTTTATCACTTTATCAgaaccaaacaatgttattggt11.8100100
VGCa-27Lineage IVCTTTTCAAATCAATACTCAACTTTttaacgacggtaacgtgccac58.3100100
INLb-84Serogroup 4b (213)TCAACTAACTAATCATCTATCAATggtaaaaatatgcgaatattg9.7100100
INLb-85Serogroup 4bATACTACATCATAATCAAACATCActcgtgaacaagctttcc5.5100100
INLb-16Serogroup 1/2b (293)AATCAATCTTCATTCAAATCATCAggtaaaaatatgcgtatctta11.7100100
INLb-100Serogroup 1/2bCTATCTTTAAACTACAAATCTAACgtgaataagctatcggtctat13.0100100
LMO-42Serogroup 1/2a (268)CTATCTTCATATTTCACTATAAACtggcgttgctgrctaagtttg6.6100100
VGCb-40Serogroup 1/2aCTTTCTACATTATTCACAACATTAaatcaagcsgctcatatgaag10.410098.6
LMO-9Serogroup 1/2c (72)TAATCTTCTATATCAACATCTTACtttactggtgaaatggcg13.5100100
VGCb-5Serogroup 1/2cCAATTCAAATCACAATAATCAATCaagattacgaatcgcttccac20.898.6100
LMO-10ECI (111)ATCATACATACATACAAATCTACAatgattaaaagtcagggaaag19.0100100
LMO-28ECICTACAAACAAACAAACATTATCAAaatcgaggcttacgaacgt23.7100100
VGCc-80ECIa (44)CTAACTAACAATAATCTAACTAACactacaacgaaaacagcgc10.7100100
VGCa-35ECIaCAATTTCATCATTCATTCATTTCAgttacttttatgtcgagt9.2100100
LMO-12ECII (35)TACACTTTCTTTCTTTCTTTCTTTataccgattatttggacggtt3.8100100
LMO-30ECIITTACCTTTATACCTTTCTTTTTACgacttgtagcagttgatttcaa7.5100100
VGCc-45ECIII (10)TCATTTCACAATTCAATTACTCAActcttatttgcttttgttggtc21.110099.4
INLa-3ECIIITACACTTTATCAAATCTTACAATCgagcttaatgaaaatcagcta17.010099.4
INLa-1INLa controlCTTTAATCTCAATCAATACAAATCagaagtggaagctgggaaNAaNANA
INLb-13INLb controlCAATAAACTATACTTCTTCACTAAtgcacctaaacctccgacNANANA
LMO-88LMO controlTTACTTCACTTTCTATTTACAATCccgtttccttatgccacaNANANA
VGCa-23VGCa controlTTCAATCATTCAAATCTCAACTTTcaagycctaagacgccaatcgNANANA
VGCb-25VGCb controlCTTTTCAATTACTTCAAATCTTCAgcatgcgttagttcatgrccaNANANA
VGCc-82VGCc controlTACATACACTAATAACATACTCATgactgcatgctagaatctaagNANANA
Open in a separate windowaNA, not applicable for positive amplicon control probes.bLuminex microsphere sets (Luminex Corporation) used for hybridization reactions are indicated following the hyphen.cn, number of isolates representing the target subtype among the 906 tested isolates.dThe 5′ sequence tag portions of extension probes are capitalized. See IUPAC codes for definitions of degenerate bases.eID, index of discrimination.Validation of the TMLGT assay was performed using 906 L. monocytogenes isolates for which the lineage, major serogroup, and epidemic clone type had been determined independently (see Table S1 in the supplemental material). A subset of 92 isolates, including at least five isolates from each lineage, serogroup, and epidemic clone type, was used to evaluate the discriminatory power of subtype-specific probes and the repeatability of the assay (see Table S1). Two independent runs of the 30-probe TMLGT assay produced identical results for these 92 isolates. In addition, genotypes matched expectations for all isolate/probe combinations, and the fluorescence intensities for positive genotypes (those targeted by a particular probe) were 3.8 to 58.3 (mean, 18.5) times as high as background values for isolates with negative genotypes (those not targeted by a particular probe) (Table (Table2).2). The performances of individual probes also were assessed in terms of sensitivity and specificity, where sensitivity is defined as the percentage of positive samples that produced positive results and specificity indicates the percentage of negative samples that produce negative results (5). Based on results from all 906 isolates analyzed by TMLGT, probe sensitivity was at least 98.6% and 23 of the 24 subtype-specific probes exhibited 100% sensitivity (Table (Table2).2). The specificities for all probes were also greater than 98.6%, and 21 of the 24 subtype-specific probes exhibited 100% specificity (Table (Table22).All but three of the 906 isolates in the validation panel were fully and accurately typed relative to lineage, serogroup, and epidemic clone by using the TMLGT assay (typeability, 99.9%; accuracy of isolate assignment, 99.8%). One of the lineage II isolates, NRRL B-33880, could not be assigned to a serogroup based on the TMLGT results because this isolate was positive for one of the serogroup 1/2a probes (VGCb-40) and one of the serogroup 1/2c probes (LMO-9). This isolate was previously identified as a member of serogroup 1/2c based on mapping lineage-specific MLGT data onto a multilocus phylogeny (34) but produced a serogroup 1/2a-specific banding pattern (data not shown) with the multiplex PCR assay described by Doumith et al. (7). Similar strains, including the common laboratory strain EGD-e, were found to have genomes that are more similar to serogroup 1/2c strains than to strains from the 1/2a serogroup (8, 33) and likely represent intermediates in the evolution of the 1/2c clade from 1/2a ancestors. There is a poor correlation between genomic and antigenic variation for such isolates (34), consistent with the ambiguous results produced by application of the TMLGT assay to NRRL B-33880. The two other problematic isolates, NRRL B-33555 and NRRL B-33559, were accurately identified based on TMLGT data as lineage II isolates from the 1/2a serogroup. However, these two isolates were positive for both ECIII-specific probes in the TMLGT assay but have lineage-specific MLGT haplotypes (Lm2.46), indicating that they are representatives of a sister group closely related to ECIII (33).In 2005, the Food Safety and Inspection Service (FSIS) implemented an approach to inspection that includes consideration of relative risk in order to determine L. monocytogenes sampling frequency among establishments that produce certain RTE products. This approach incorporates information on production volume, outgrowth potential in the product, steps taken to prevent postlethality contamination, and FSIS sampling history. However, L. monocytogenes subtype-specific variation in ecology and virulence indicates that information on the lineage, major serogroup, and epidemic clone identities of isolates could be used to inform assessments of relative risk and to improve inspection programs that are based on consideration of risk. Several PCR-based methods have been described for differentiation of various combinations of these subgroups (1-3, 5, 7, 10, 35, 37); however, these approaches have focused on a single subgroup or a smaller set of subgroups than is differentiated by TMLGT analysis. Although we previously developed a set of three MLGT assays that can be used to differentiate all of the major serogroups and epidemic clones of L. monocytogenes (9, 33, 34), those assays did not include probes for lineage discrimination and require identification of the lineage prior to application of one of three unique sets of probes. In addition, the MLGT assays were designed to maximize strain discrimination, as opposed to subgroup identification, and require the use of at least twice as many probes as is needed for TMLGT analysis. MLGT data analysis is also more complicated than analysis of TMLGT data, and serogroup or epidemic clone type identification via MLGT requires phylogenetic analyses to place novel haplotypes within an established phylogenetic framework.In the present study, we developed the first assay for simultaneous discrimination of the four lineages, the four major serogroups, and the four previously described epidemic clones of L. monocytogenes. The assay includes multiple markers for each of these subtype probes as well as control probes to ensure that negative probe data were not the result of amplification failure, providing a high degree of internal validation required for use in inspection programs that consider risk in making sampling decisions. In addition, the utility of the assay has been validated with a large and diverse panel of 906 isolates, including 567 isolates from FSIS surveillance of RTE products and processing facilities (see Table S1 in the supplemental material). Data produced by the TMLGT assay are amenable to high-throughput analysis, and a simple spreadsheet utility has been developed to semiautomate subtype identifications and to alert investigators to potentially conflicting probe data (available upon request). In addition to having a potential application in inspection programs, the TMLGT assay provides a rapid and accurate means of characterizing L. monocytogenes isolates from different environments, which would facilitate pathogen tracking and improve understanding of L. monocytogenes ecology.   相似文献   

8.
Natural Infection of Burkholderia pseudomallei in an Imported Pigtail Macaque (Macaca nemestrina) and Management of the Exposed Colony     
Crystal H Johnson  Brianna L Skinner  Sharon M Dietz  David Blaney  Robyn M Engel  George W Lathrop  Alex R Hoffmaster  Jay E Gee  Mindy G Elrod  Nathaniel Powell  Henry Walke 《Comparative medicine》2013,63(6):528-535
Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff.Abbreviations: CDC, Centers for Disease Control and Prevention; IHA, indirect hemagglutination assay; PEP, postexposure prophylacticBurkholderia pseudomallei, formerly known as Pseudomonas pseudomallei, is a gram-negative, aerobic, bipolar, motile, rod-shaped bacterium. B. pseudomallei infections (melioidosis) can be severe and even fatal in both humans and animals. This environmental saprophyte is endemic to Southeast Asia and northern Australia, but it has also been found in other tropical and subtropical areas of the world.7,22,32,42 The bacterium is usually found in soil and water in endemic areas and is transmitted to humans and animals primarily through percutaneous inoculation, ingestion, or inhalation of a contaminated source.8, 22,28,32,42 Human-to-human, animal-to-animal, and animal-to-human spread are rare.8,32 In December 2012, the National Select Agent Registry designated B. pseudomallei as a Tier 1 overlap select agent.39 Organisms classified as Tier 1 agents present the highest risk of deliberate misuse, with the most significant potential for mass casualties or devastating effects to the economy, critical infrastructure, or public confidence. Select agents with this status have the potential to pose a severe threat to human and animal health or safety or the ability to be used as a biologic weapon.39Melioidosis in humans can be challenging to diagnose and treat because the organism can remain latent for years and is resistant to many antibiotics.12,37,41 B. pseudomallei can survive in phagocytic cells, a phenomenon that may be associated with latent infections.19,38 The incubation period in naturally infected animals ranges from 1 d to many years, but symptoms typically appear 2 to 4 wk after exposure.13,17,35,38 Disease generally presents in 1 of 2 forms: localized infection or septicemia.22 Multiple methods are used to diagnose melioidosis, including immunofluorescence, serology, and PCR analysis, but isolation of the bacteria from blood, urine, sputum, throat swabs, abscesses, skin, or tissue lesions remains the ‘gold standard.’9,22,40,42 The prognosis varies based on presentation, time to diagnosis, initiation of appropriate antimicrobial treatment, and underlying comorbidities.7,28,42 Currently, there is no licensed vaccine to prevent melioidosis.There are several published reports of naturally occurring melioidosis in a variety of nonhuman primates (NHP; 2,10,13,17,25,30,31,35 The first reported case of melioidosis in monkeys was recorded in 1932, and the first published case in a macaque species was in 1966.30 In the United States, there have only been 7 documented cases of NHP with B. pseudomallei infection.2,13,17 All of these cases occurred prior to the classification of B. pseudomallei as a select agent. Clinical signs in NHP range from subclinical or subacute illness to acute septicemia, localized infection, and chronic infection. NHP with melioidosis can be asymptomatic or exhibit clinical signs such as anorexia, wasting, purulent drainage, subcutaneous abscesses, and other soft tissue lesions. Lymphadenitis, lameness, osteomyelitis, paralysis and other CNS signs have also been reported.2,7,10,22,28,32 In comparison, human''s clinical signs range from abscesses, skin ulceration, fever, headache, joint pain, and muscle tenderness to abdominal pain, anorexia, respiratory distress, seizures, and septicemia.7,9,21,22

Table 1.

Summary of reported cases of naturally occurring Burkholderia pseudomalleiinfections in nonhuman primates
CountryaImported fromDate reportedSpeciesReference
AustraliaBorneo1963Pongo sp.36
BruneiUnknown1982Orangutan (Pongo pygmaeus)33
France1976Hamlyn monkey (Cercopithecus hamlyni) Patas monkey (Erythrocebus patas)11
Great BritainPhilippines and Indonesia1992Cynomolgus monkey (Macaca fascicularis)10
38
MalaysiaUnknown1966Macaca spp.30
Unknown1968Spider monkey (Brachytelis arachnoides) Lar gibbon (Hylobates lar)20
Unknown1969Pig-tailed macaque (Macaca nemestrina)35
Unknown1984Banded leaf monkey (Presbytis melalophos)25
SingaporeUnknown1995Gorillas, gibbon, mandrill, chimpanzee43
ThailandUnknown2012Monkey19
United StatesThailand1970Stump-tailed macaque (Macaca arctoides)17
IndiaPig-tailed macaque (Macaca nemestrina)
AfricaRhesus macaque (Macaca mulatta) Chimpanzee (Pan troglodytes)
Unknown1971Chimpanzee (Pan troglodytes)3
Malaysia1981Pig-tailed macaque (Macaca nemestrina)2
Wild-caught, unknown1986Rhesus macaque (Macaca mulatta)13
Indonesia2013Pig-tailed macaque (Macaca nemestrina)Current article
Open in a separate windowaCountry reflects the location where the animal was housed at the time of diagosis.Here we describe a case of melioidosis diagnosed in a pigtail macaque (Macaca nemestrina) imported into the United States from Indonesia and the implications of the detection of a select agent identified in a laboratory research colony. We also discuss the management and care of the exposed colony, zoonotic concerns regarding the animal care staff that worked with the shipment of macaques, effects on research studies, and the procedures involved in reporting a select agent incident.  相似文献   

9.
Stable Transcription Activities Dependent on an Orientation of Tam3 Transposon Insertions into Antirrhinum and Yeast Promoters Occur Only within Chromatin     
Takako Uchiyama  Kaien Fujino  Takashi Ogawa  Akihito Wakatsuki  Yuji Kishima  Tetsuo Mikami  Yoshio Sano 《Plant physiology》2009,151(3):1557-1569
  相似文献   

10.
Comparative Analysis of Myxococcus Predation on Soil Bacteria     
Andrew D. Morgan  R. Craig MacLean  Kristina L. Hillesland  Gregory J. Velicer 《Applied and environmental microbiology》2010,76(20):6920-6927
Predator-prey relationships among prokaryotes have received little attention but are likely to be important determinants of the composition, structure, and dynamics of microbial communities. Many species of the soil-dwelling myxobacteria are predators of other microbes, but their predation range is poorly characterized. To better understand the predatory capabilities of myxobacteria in nature, we analyzed the predation performance of numerous Myxococcus isolates across 12 diverse species of bacteria. All predator isolates could utilize most potential prey species to effectively fuel colony expansion, although one species hindered predator swarming relative to a control treatment with no growth substrate. Predator strains varied significantly in their relative performance across prey types, but most variation in predatory performance was determined by prey type, with Gram-negative prey species supporting more Myxococcus growth than Gram-positive species. There was evidence for specialized predator performance in some predator-prey combinations. Such specialization may reduce resource competition among sympatric strains in natural habitats. The broad prey range of the Myxococcus genus coupled with its ubiquity in the soil suggests that myxobacteria are likely to have very important ecological and evolutionary effects on many species of soil prokaryotes.Predation plays a major role in shaping both the ecology and evolution of biological communities. The population and evolutionary dynamics of predators and their prey are often tightly coupled and can greatly influence the dynamics of other organisms as well (1). Predation has been invoked as a major cause of diversity in ecosystems (11, 12). For example, predators may mediate coexistence between superior and inferior competitors (2, 13), and differential trajectories of predator-prey coevolution can lead to divergence between separate populations (70).Predation has been investigated extensively in higher organisms but relatively little among prokaryotes. Predation between prokaryotes is one of the most ancient forms of predation (27), and it has been proposed that this process may have been the origin of eukaryotic cells (16). Prokaryotes are key players in primary biomass production (44) and global nutrient cycling (22), and predation of some prokaryotes by others is likely to significantly affect these processes. Most studies of predatory prokaryotes have focused on Bdellovibrionaceae species (e.g., see references 51, 55, and 67). These small deltaproteobacteria prey on other Gram-negative cells, using flagella to swim rapidly until they collide with a prey cell. After collision, the predator cells then enter the periplasmic space of the prey cell, consume the host cell from within, elongate, and divide into new cells that are released upon host cell lysis (41). Although often described as predatory, the Bdellovibrionaceae may also be considered to be parasitic, as they typically depend (apart from host-independent strains that have been observed [60]) on the infection and death of their host for their reproduction (47).In this study, we examined predation among the myxobacteria, which are also deltaproteobacteria but constitute a monophyletic clade divergent from the Bdellovibrionaceae (17). Myxobacteria are found in most terrestrial soils and in many aquatic environments as well (17, 53, 74). Many myxobacteria, including the model species Myxococcus xanthus, exhibit several complex social traits, including fruiting body formation and spore formation (14, 18, 34, 62, 71), cooperative swarming with two motility systems (64, 87), and group (or “wolf pack”) predation on both bacteria and fungi (4, 5, 8, 9, 15, 50). Using representatives of the genus Myxococcus, we tested for both intra- and interspecific variation in myxobacterial predatory performance across a broad range of prey types. Moreover, we examined whether prey vary substantially in the degree to which they support predatory growth by the myxobacteria and whether patterns of variation in predator performance are constant or variable across prey environments. The latter outcome may reflect adaptive specialization and help to maintain diversity in natural populations (57, 59).Although closely related to the Bdellovibrionaceae (both are deltaproteobacteria), myxobacteria employ a highly divergent mode of predation. Myxobacteria use gliding motility (64) to search the soil matrix for prey and produce a wide range of antibiotics and lytic compounds that kill and decompose prey cells and break down complex polymers, thereby releasing substrates for growth (66). Myxobacterial predation is cooperative both in its “searching” component (6, 31, 82; for details on cooperative swarming, see reference 64) and in its “handling” component (10, 29, 31, 32), in which secreted enzymes turn prey cells into consumable growth substrates (56, 83). There is evidence that M. xanthus employs chemotaxis-like genes in its attack on prey cells (5) and that predation is stimulated by close contact with prey cells (48).Recent studies have revealed great genetic and phenotypic diversity within natural populations of M. xanthus, on both global (79) and local (down to centimeter) scales (78). Phenotypic diversity includes variation in social compatibility (24, 81), the density and nutrient thresholds triggering development (33, 38), developmental timing (38), motility rates and patterns (80), and secondary metabolite production (40). Although natural populations are spatially structured and both genetic diversity and population differentiation decrease with spatial scale (79), substantial genetic diversity is present even among centimeter-scale isolates (78). No study has yet systematically investigated quantitative natural variation in myxobacterial predation phenotypes across a large number of predator genotypes.Given the previous discovery of large variation in all examined phenotypes, even among genetically extremely similar strains, we anticipated extensive predatory variation as well. Using a phylogenetically broad range of prey, we compared and contrasted the predatory performance of 16 natural M. xanthus isolates, sampled from global to local scales, as well as the commonly studied laboratory reference strain DK1622 and representatives of three additional Myxococcus species: M. flavescens (86), M. macrosporus (42), and M. virescens (63) (Table (Table1).1). In particular, we measured myxobacterial swarm expansion rates on prey lawns spread on buffered agar (31, 50) and on control plates with no nutrients or with prehydrolyzed growth substrate.

TABLE 1.

List of myxobacteria used, with geographical origin
Organism abbreviation used in textSpeciesStrainGeographic originReference(s)
A9Myxococcus xanthusA9Tübingen, Germany78
A23Myxococcus xanthusA23Tübingen, Germany78
A30Myxococcus xanthusA30Tübingen, Germany78
A41Myxococcus xanthusA41Tübingen, Germany78
A46Myxococcus xanthusA46Tübingen, Germany78
A47Myxococcus xanthusA47Tübingen, Germany78
A75Myxococcus xanthusA75Tübingen, Germany78
A85Myxococcus xanthusA85Tübingen, Germany78
TVMyxococcus xanthusTvärminneTvärminne, Finland79
PAKMyxococcus xanthusPaklenicaPaklenica, Croatia79
MADMyxococcus xanthusMadeira 1Madeira, Portugal79
WARMyxococcus xanthusWarwick 1Warwick, UK79
TORMyxococcus xanthusToronto 1Toronto, Ontario, Canada79
SUL2Myxococcus xanthusSulawesi 2Sulawesi, Indonesia79
KALMyxococcus xanthusKalalauKalalau, HI79
DAVMyxococcus xanthusDavis 1ADavis, CA79
GJV1Myxococcus xanthusGJV 1Unknown35, 72
MXFL1Myxococcus flavescensMx fl1Unknown65
MXV2Myxococcus virescensMx v2Unknown65
CCM8Myxococcus macrosporusCc m8Unknown65
Open in a separate window  相似文献   

11.
Tomato BRI1 and systemin wound signalling     
Nicholas Holton  Kate Harrison  Takao Yokota  Gerard J Bishop 《Plant signaling & behavior》2008,3(1):54-55
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (35S:TomatoBRI1 complemented lineWt*cu3*6-deoxocathasterone5669646766-deoxoteasteronend47483-dehydro-6-deoxoteasterone8762696-deoxotyphasterolnd5884226-deoxocastasterone1,7556,24726,210castasterone25563717,428brassinolidendndndOpen in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

12.
Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function     
Shaojun Dai  Sixue Chen 《Molecular & cellular proteomics : MCP》2012,11(12):1622-1630
  相似文献   

13.
Nooks and Crannies in Type VI Secretion Regulation     
Christophe S. Bernard  Yannick R. Brunet  Erwan Gueguen  Eric Cascales 《Journal of bacteriology》2010,192(15):3850-3860
  相似文献   

14.
Functional Characterization of Naturally Occurring Variants of Human Hepatitis B Virus Containing the Core Internal Deletion Mutation     
Thomas Ta-Tung Yuan  Min-Hui Lin  Sui Min Qiu  Chiaho Shih 《Journal of virology》1998,72(3):2168-2176
  相似文献   

15.
Transcriptional and Functional Classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-Like Signaling Peptides Reveals Their Role in Lateral Root and Hair Formation     
Ana Fernandez  Andrzej Drozdzecki  Kurt Hoogewijs  Anh Nguyen  Tom Beeckman  Annemieke Madder  Pierre Hilson 《Plant physiology》2013,161(2):954-970
  相似文献   

16.
Phosphoprotein Secretome of Tumor Cells as a Source of Candidates for Breast Cancer Biomarkers in Plasma     
Anna M. Zawadzka  Birgit Schilling  Michael P. Cusack  Alexandria K. Sahu  Penelope Drake  Susan J. Fisher  Christopher C. Benz  Bradford W. Gibson 《Molecular & cellular proteomics : MCP》2014,13(4):1034-1049
Breast cancer is a heterogeneous disease whose molecular diversity is not well reflected in clinical and pathological markers used for prognosis and treatment selection. As tumor cells secrete proteins into the extracellular environment, some of these proteins reach circulation and could become suitable biomarkers for improving diagnosis or monitoring response to treatment. As many signaling pathways and interaction networks are altered in cancerous tissues by protein phosphorylation, changes in the secretory phosphoproteome of cancer tissues could reflect both disease progression and subtype. To test this hypothesis, we compared the phosphopeptide-enriched fractions obtained from proteins secreted into conditioned media (CM) derived from five luminal and five basal type breast cancer cell lines using label-free quantitative mass spectrometry. Altogether over 5000 phosphosites derived from 1756 phosphoproteins were identified, several of which have the potential to qualify as phosphopeptide plasma biomarker candidates for the more aggressive basal and also the luminal-type breast cancers. The analysis of phosphopeptides from breast cancer patient plasma and controls allowed us to construct a discovery list of phosphosites under rigorous collection conditions, and second to qualify discovery candidates generated from the CM studies. Indeed, a set of basal-specific phosphorylation CM site candidates derived from IBP3, CD44, OPN, FSTL3, LAMB1, and STC2, and luminal-specific candidates derived from CYTC and IBP5 were selected and, based on their presence in plasma, quantified across all cell line CM samples using Skyline MS1 intensity data. Together, this approach allowed us to assemble a set of novel cancer subtype specific phosphopeptide candidates for subsequent biomarker verification and clinical validation.Breast cancer (BC)1 is a heterogeneous disease whose molecular complexity and diversity is not well reflected in current clinical and pathological markers. Therefore, there is a critical need to increase the number of clinically suitable biomarkers that better reflect the many molecular subtypes of BC (13). BC can be categorized by gene expression profiling and molecular pathology into three major clinical types, each with different natural histories and therapeutic recommendations, and exhibiting significant molecular and clinical heterogeneity. First, luminal estrogen receptor (ER) positive breast cancers exist in luminal A and B subtypes; they are the most numerous and clinically diverse of all breast cancers, with luminal A tumors having the more favorable prognosis because of their responsiveness to targeted endocrine therapy compared with the more proliferative luminal B tumors. Second, human epidermal growth factor receptor-2 (HER2/ErbB2) amplified breast cancers, despite having poor prognosis in the absence of any systemic adjuvant therapy, can now be successfully treated with HER2-targeted agents. Third, basal-like breast cancers are among the most aggressive tumors, and are further subdivided. Those with BRCA1-like features are modeled by basal-A breast cancer cell lines, and those with mesenchymal and stem/progenitor-cell features are modeled by basal-B breast cancer cell lines (4). This latter subtype of basal-like tumors include triple negative breast cancers (TNBC), lacking expression of ER, progesterone receptor (PR), and HER2, and therefore not susceptible to more advanced targeted treatment options and requiring aggressive chemotherapy with otherwise very poor prognosis (5).BC is the leading cause of adult female mortality worldwide, caused by recurrent spread of metastatic disease that is thought to have seeded prior to the time of primary tumor excision (6). Thus, blood-based biomarkers that are highly specific as well as capable of detecting BC prior to primary tumor diagnosis offer the potential to decrease BC morbidity as well as identify the most appropriate treatment options (7). As cancer cells are known to secrete proteins into the extracellular microenvironment that modify cell adhesion, intercellular communication, motility, and invasiveness (8), it is expected that some will enter the blood stream and become suitable targets for early noninvasive diagnosis or monitoring of treatment progression.It is well recognized that blood contains hormones, cytokines, and other nonhormonal proteins, as well as a tissue leakage products and secretions from diseased tissues and tumors (9). Secreted proteins are often in the low abundance range of plasma protein concentrations, and likely contain proteins specific for distinct tumor and/or tissue types. Because tumorogenesis is known to involve changes in cellular signaling pathways involving protein kinases, protein phosphorylation is a particularly promising target for the detection of such activated pathways in BC (10). For example, almost half of the tyrosine kinases of the human “kinome” are implicated in human cancers (11) as well as numerous serine-threonine kinases, including Akt and mTOR (12, 13). Kinases participating in signal transduction pathways phosphorylate their substrates altering their conformation, localization, and activity, which in turn modulates downstream protein effectors and alters cellular processes. Like other posttranslational modifications, changes in the phosphorylation status of a protein do not directly correlate with changes in expression, and are therefore not accounted for in most gene expression or protein array analyses (14). Therefore, we hypothesized that phosphoproteins secreted or shed by cancer cells constitute a largely overlooked source of biomarker candidates that could be correlated with BC subtypes and/or disease status (15, 16).To test this hypothesis, we analyzed the conditioned media (CM) from human cancer cell lines, a well-established model for the discovery of disease-specific biomarkers (17, 18). Breast cancer cell lines derived from primary tumors or pleural effusions are a good model of BC, mirroring molecular characteristics of primary breast tumors (19). The use of CM is also advantageous in that it provides sufficient amounts of sample to identify candidates that can subsequently be targeted in more limited breast cancer patient plasma samples. To examine the phosphorylation status of secreted proteins, we examined a panel of five luminal and five basal type BC cell lines thought to emulate the molecular characteristics of most primary breast tumor types, including four basal-B subtypes corresponding to TNBC (19). A mass spectrometry-based proteomic approach was used that employed HILIC fractionation, TiO2 affinity enrichment of phosphopeptides, and final mass spectrometric analysis by reverse-phase liquid chromatography and label-free quantification (Fig. 1). MS1 Filtering in Skyline (20, 21) was used to quantify relative differences in site-specific protein phosphorylation between secretomes of BC cell lines derived from breast tumor subtypes to discern luminal or basal tumor specificity. Lastly, plasma obtained from breast cancer patients and controls were analyzed in an optimized workflow suitable to both preserve and identify phosphopeptides, and to qualify a subset of biomarker candidates selected from the CM analysis (Fig. 1). Overall, we identified 107 phosphorylation sites specific for basal-type tumors derived from 84 proteins and 95 phosphorylation sites specific for luminal-type tumors derived from 64 proteins. Moreover, we qualified the presence of seven basal type specific and two luminal specific phosphosites derived from eight phosphoproteins in BC patient and control plasma.

Table I

Luminal and basal breast cancer cell lines
Cell lineaTumor subtypeERbPRcHER2dDiagnosise
MCF7Luminal++NoIDC
T47DLuminal++NoIDC
BT474Luminal++YesIDC
MDAMB361Luminal+YesAdenocarcinoma
SKBR3LuminalYesAdenocarcinoma
HCC1954Basal AYesDuctal carcinoma
MCF10ABasal BNoFibrocystic disease
MDAMB231Basal BNoAdenocarcinoma
HCC38Basal BNoDuctal carcinoma
BT549Basal BNoIDC, papillary
Open in a separate windowa This table was populated with information from Neve et al. (19).b Estrogen (ER).c Progesterone receptor (PR) expression.d Human epidermal growth factor receptor 2 (HER2/ERBB2) overexpression.e Invasive ductal carcinoma (IDC).Open in a separate windowFig. 1.The experimental workflow developed for preparation of phosphopeptides from CM samples from breast cancer cell lines derived from five luminal and five basal tumors.  相似文献   

17.
Characterization of the Cpx Regulon in Escherichia coli Strain MC4100     
Nancy L. Price  Tracy L. Raivio 《Journal of bacteriology》2009,191(6):1798-1815
  相似文献   

18.
Improved Molecular Detection of Angiostrongylus cantonensis in Mollusks and Other Environmental Samples with a Species-Specific Internal Transcribed Spacer 1-Based TaqMan Assay     
Yvonne Qvarnstrom  Ana Cristina Aramburu da Silva  John L. Teem  Robert Hollingsworth  Henry Bishop  Carlos Graeff-Teixeira  Alexandre J. da Silva 《Applied and environmental microbiology》2010,76(15):5287-5289
Angiostrongylus cantonensis is the most common cause of human eosinophilic meningitis. Humans become infected by ingesting food items contaminated with third-stage larvae that develop in mollusks. We report the development of a real-time PCR assay for the species-specific identification of A. cantonensis in mollusk tissue.Angiostrongylus cantonensis is the most common agent associated with eosinophilic meningitis in humans. Young adult worms develop in the brains of rodents and are carried to pulmonary arteries to reach sexual maturity. Eggs are laid in lung tissues, and first-stage (L1) larvae break into air spaces, migrate to the trachea, are swallowed, and are passed with rodent feces. The L1 larvae must infect mollusks to develop into third-stage (L3) larvae; L3 is the infective stage for rodents and other mammals. Humans become infected by ingesting raw produce contaminated with L3 larvae or infected raw or undercooked mollusks or paratenic hosts. The immature worms remain in the human brain, creating tissue damage and inflammation (2, 19, 21).A. cantonensis is endemic in Southeast Asia, parts of the Caribbean, and the Pacific Islands, including Hawaii (7, 12, 15-17). The worm has been detected in host animals in Louisiana (5, 14) and in one human patient from New Orleans (18), but it is currently unclear to what extent the nematode has spread into other U.S. states (8, 9). Ascertaining the geographic presence of the parasite is important to manage and prevent new cases of eosinophilic meningitis associated with ingestion of infective larvae (12, 18).Detection of A. cantonensis in mollusks can be performed by releasing the larvae from the tissue with pepsin digestion (11). However, that procedure requires access to living mollusks, which complicates analysis of large numbers of samples. After a recent outbreak of angiostrongyliasis in Hawaii (12), we developed a conventional PCR assay and applied it to survey the Hawaiian mollusk population using frozen tissue (20). That PCR assay, as well as morphological identification using pepsin digestion, can only identify the larvae on the superfamily level, so additional molecular work is required for species-specific classification. Here we describe a new real-time PCR assay that allows for a direct detection of A. cantonensis at the species level.The 18S rRNA gene is too conserved among nematode species to allow species-specific detection. The first and second internal transcribed spacers (ITS1 and ITS2) are comparatively more variable than the rRNA coding regions and have thus been used for differentiation of closely related species (1, 4, 6, 10, 22, 23). We PCR amplified and sequenced ITS1 from A. costaricensis (two laboratory strains from Costa Rica and Brazil), A. vasorum (from naturally infected hosts in United Kingdom), and A. cantonensis from three geographical regions (one laboratory strain from Japan plus nine environmental isolates from Hawaii and New Orleans, LA) to assess the variability of this potential PCR target. The oligonucleotide primers used were AngioF1674 (5′-GTCGTAACAAGGTATCTGTAGGTG-3′) and 58SR4 (5′-TAGCTGCGTTTTTCATCGATA-3′). The reaction mixtures contained 0.4 μM each primer and AmpliTaq Gold PCR master mix (Applied Biosystems, Foster City, CA) and were cycled 45 times at 94°C for 30 s, 65°C for 30 s, and 72°C for 1 min. PCR products were cloned into pCR2.1 vectors using the TOPO cloning technique (Invitrogen, Carlsbad, CA) and sequenced on both strands as described elsewhere (20).The sequence analysis revealed high interspecific and low intraspecific variability. A TaqMan assay targeting ITS1 was then designed using Primer Express version 2.3 (Applied Biosystems, Foster City, CA). The real-time PCR assay was performed in a 20-μl total volume containing Platinum qPCR Supermix (Invitrogen, Carlsbad, CA), 0.2 μM (each) primers AcanITS1F1 (5′-TTCATGGATGGCGAACTGATAG-3′) and AcanITS1R1 (5′-GCGCCCATTGAAACATTATACTT-3′), and 0.05 μM the TaqMan probe AcanITS1P1 (5′-6-carboxyfluorescein-ATCGCATATCTACTATACGCATGTGACACCTG-BHQ-3′). The standard cycling conditions for TaqMan assays were used (i.e., 40 cycles of 95°C for 15 s and 60°C for 1 min).We evaluated the real-time PCR assay with a set of 26 Parmarion martensi slugs from Hawaii. Seventeen slugs were positive for L3 larvae as determined by pepsin digestion, and nine slugs were negative. DNA was extracted from approximately 25 mg of tissue of each slug using the DNeasy tissue and blood DNA extraction kit (Qiagen, Inc., Valencia, CA). The real-time PCR performed on this set of samples returned an identical result to the morphological analysis. The real-time PCR amplified only DNA from A. cantonensis and did not react with DNA from other nematode species (Table (Table1).1). The detection limit of the assay was determined by serially diluting a recombinant plasmid containing the ITS1 sequence to less than 1 copy per μl of sample. The real-time PCR reliably detected down to 10 plasmid copies in the reaction.

TABLE 1.

Comparison of conventional and real-time PCR for detection of Angiostrongylus cantonensis in mollusks and nematode samples
Biological origin of DNA sampleGeographic originNo. of samples testedNo. of samples positive by:
18S rRNA-based conventional PCRITS1-based TaqMan PCR
Parmarion martensiHawaii1127583
Veronicella cubensisHawaii5023a22
Laevicaulis alteHawaii534
Achatina fulicaHawaii645
Other/unidentified mollusksHawaii1645
FlatwormsHawaii222
Slime from infected slugsHawaii1311
Pomacea insularumLouisiana3155
A. costaricensisBrazil, Costa Rica22b0
A. vasorumUnited Kingdom22b0
Other nematodescCDC collection1400
Total253121127
Open in a separate windowaThis number includes three samples positive by PCR but later identified as non-Angiostrongylus nematodes by DNA sequencing analysis of the amplicons (20). These three samples were negative in the real-time PCR assay.bThe conventional PCR detects other Angiostrongylus species besides A. cantonensis.cTwo stool samples containing Strongyloides worms, eight environmental samples containing unclassified free-living nematodes and one of each of the following parasitic nematodes: Dipetalonema sp., Toxocara cati, Dracunculus medinensis, and Ascaris lumbricoides.The real-time PCR assay was then used to analyze a larger set of naturally infected host animals from Hawaii, partly described elsewhere (13, 20), and Island Apple snails (Pomacea insularum) from New Orleans, LA. All samples had previously been characterized by the conventional PCR followed by DNA sequencing analysis (20).Table Table11 summarizes the PCR findings and highlights the enhanced performance of the real-time PCR in comparison to the conventional PCR. In addition, the real-time PCR assay was more practical to use since it did not require DNA sequence confirmation to rule out false positives.The findings from Island Apple snails from New Orleans infected with A. cantonensis concur with previous reports about the potential for angiostrongyliasis transmission in this area (5, 14). Another interesting finding was the positive PCR results in two samples of flatworms from Hawaii. Predatory flatworms that ingest infected mollusks are known to be paratenic hosts of A. cantonensis and have been suspected to be an important source of infection for humans in Japan because they hide in leafy vegetables (3).In conclusion, this real-time PCR assay can be a useful tool for environmental surveys of local wildlife to determine the geographic distribution of this reemerging human parasite.  相似文献   

19.
Pharmacovirological Impact of an Integrase Inhibitor on Human Immunodeficiency Virus Type 1 cDNA Species In Vivo     
Christine Goffinet  Ina Allespach  Lena Oberbremer  Pamela L. Golden  Scott A. Foster  Brian A. Johns  Jason G. Weatherhead  Steven J. Novick  Karen E. Chiswell  Edward P. Garvey  Oliver T. Keppler 《Journal of virology》2009,83(15):7706-7717
  相似文献   

20.
In Vitro and In Vivo Oncogenic Potential of Bovine Leukemia Virus G4 Protein     
Pierre Kerkhofs  Hubertine Heremans  Arsène Burny  Richard Kettmann  Luc Willems 《Journal of virology》1998,72(3):2554-2559
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号