首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cytochrome c (cyt c) on degradation of cardiolipin in its polar part was investigated in cardiolipin/phosphatidylcholine (CL/PC) liposomes incubated with cyt c/H2O2/and (or) ascorbate by high-performance thin layer chromatography and MALDI-TOF mass spectrometry. It has been shown that phosphatidic acid (PA) and phosphatidylhydroxyacetone (PHA) were formed in the system under conditions where hydrogen peroxide favours a release of heme iron from cyt c. The formation of PA and PHA occurs via an OH-induced fragmentation taking place in the polar moiety of cardiolipin. Formation of fragmentation products correlated with the loss of CL in CL/PC liposomes incubated with cyt c/H2O2/ascorbate or with Cu2+/H2O2/ascorbate.  相似文献   

2.
Hemoproteins play central roles in the formation and utilization of nitric oxide (NO) in cellular signaling, as well as in protection against nitrosative stress. Key to heme-nitrosyl function and reactivity is the Fe coordination number (5 or 6). For (five-coordinate) 5c-NO complexes, the potential for NO to bind on either heme face exists, as in the microbial cytochrome c′ from Alcaligenes xylosoxidans (AxCYTcp), which forms a stable proximal 5c-NO complex via a distal six-coordinate NO intermediate and a putative dinitrosyl species. Strong parallels between the NO-binding kinetics of AxCYTcp, the eukaryotic NO sensor soluble guanylate cyclase, and the ferrocytochrome c/cardiolipin complex have led to the suggestion that a distal-to-proximal NO switch could contribute to the selective ligand responses in gas-sensing hemoproteins. The proximal NO-binding site in AxCYTcp is close to a conserved basic (Arg124) residue that is postulated to modulate NO reactivity. We have replaced Arg124 by five different amino acids and have determined high-resolution (1.07-1.40 Å) crystallographic structures with and without NO. These, together with kinetic and resonance Raman data, provide new insights into the mechanism of distal-to-proximal heme-NO conversion, including the determinants of Fe-His bond scission. The Arg124Ala variant allowed us to determine the structure of an analog of the previously unobserved key 5c-NO distal intermediate species. The very high resolution structures combined with the extensive spectroscopic and kinetic data have allowed us to provide a fresh insight into heme reactivity towards NO, a reaction that is of wide importance in biology.  相似文献   

3.
In cells a portion of cytochrome c (cyt c) (15–20%) is tightly bound to cardiolipin (CL), one of the phospholipids constituting the mitochondrial membrane. The CL-bound protein, which has nonnative tertiary structure, altered heme pocket, and disrupted Fe(III)-M80 axial bond, is thought to play a role in the apoptotic process. This has attracted considerable interest in order to clarify the mechanisms governing the cyt c–CL interaction. Herein we have investigated the binding reaction of CL with the c-type cytochromes from horse heart and yeast. Although the two proteins possess a similar tertiary architecture, yeast cyt c displays lower stability and, contrary to the equine protein, it does not bind ATP and lacks pro-apoptotic activity. The study has been performed in the absence and in the presence of ATP and NaCl, two compounds that influence the (horse cyt c)-CL binding process and, thus, the pro-apoptotic activity of the protein. The two proteins behave differently: while CL interaction with horse cyt c is strongly influenced by the two effectors, no effect is observed for yeast cyt c. It is noteworthy that NaCl induces dissociation of the (horse cyt c)–CL complex but has no influence on that of yeast cyt c. The differences found for the two proteins highlight that specific structural factors, such as the different local structure conformation of the regions involved in the interactions with either CL or ATP, can significantly affect the behavior of cyt c in its reaction with liposomes and the subsequent pro-apoptotic action of the protein.  相似文献   

4.
Electrochemistry of cytochrome c (cyt c) immobilized on a cardiolipin (CL)/phosphatidylcholine (PC) film supported on a glassy carbon electrode was investigated using variable-frequency AC voltammetry. At low ionic strength, we observed two redox-active subpopulations characterized by distinct values of potential (E1/2) and electron transfer rate constant (kET). At high ionic strength, only one subpopulation was detected, consistent with the existence of very stable cyt c–CL adducts, most probably formed by hydrophobic interactions between the protein and the fatty acid (FA) chains carried by CL. This subpopulation exhibits a comparatively high kET value (> 300 s− 1) apparently changing with the structure of the FA chains of CL, i.e. 18:2(n − 6) or 14:0. Our study suggests that electrochemistry can be a useful technique for probing protein–lipid interactions, and more particularly the role played by the specific structure of the FA chains of CL on cyt c binding.  相似文献   

5.
In this work the presence of inverted hexagonal phases HII of 1-palmitoy-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and cardiolipin (CL) (0.8:0.2, mol/mol) in the presence of Ca2+ were observed via 31P-NMR spectroscopy. When suspensions of the same composition were extended onto mica, HII phases transformed into structures which features are those of supported planar bilayers (SPBs). When characterized by atomic force microscopy (AFM), the SPBs revealed the existence of two laterally segregated domains (the interdomain height being ∼ 1 nm). Cytochrome c (cyt c), which binds preferentially to acidic phospholipids like CL, was used to demonstrate the nature of the domains. We used 1-anilinonaphtalen-8-sulfonate (ANS) to demonstrate that in the presence of cyt c, the fluorescence of ANS decreased significantly in lamellar phases. Conversely, the ANS binding to HII phases was negligible. When cyt c was injected into AFM fluid imaging cells, where SPBs of POPE:CL had previously formed poorly defined structures, protein aggregates (∼ 100 nm diameter) were ostensibly observed only on the upper domains, which suggests not only that they are mainly formed by CL, but also provides evidence of bilayer formation from HII phases. Furthermore, a model for the nanostructure of the SPBs is herein proposed.  相似文献   

6.
The kinetics of imidazole (Im) and N-methylimidazole (MeIm) binding to oxidized cytochrome (cyt) c1 of detergent-solubilized bc1 complex from Rhodobacter sphaeroides are described. The rate of formation of the cyt c1-Im complex exhibited three separated regions of dependence on the concentration of imidazole: (i) below 8 mm Im, the rate increased with concentration in a parabolic manner; (ii) above 20 mm, the rate leveled off, indicating a rate-limiting conformational step with lifetime ∼1 s; and (iii) at Im concentrations above 100 mm, the rate substantially increased again, also parabolically. In contrast, binding of MeIm followed a simple hyperbolic concentration dependence. The temperature dependences of the binding and release kinetics of Im and MeIm were also measured and revealed very large activation parameters for all reactions. The complex concentration dependence of the Im binding rate is not consistent with the popular model for soluble c-type cytochromes in which exogenous ligand binding is preceded by spontaneous opening of the heme cleft, which becomes rate-limiting at high ligand concentrations. Instead, binding of ligand to the heme is explained by a model in which an initial and superficial binding facilitates access to the heme by disruption of hydrogen-bonded structures in the heme domain. For imidazole, two separate pathways of heme access are indicated by the distinct kinetics at low and high concentration. The structural basis for ligand entry to the heme cleft is discussed.  相似文献   

7.

Background

Cytochrome c (Cyt c) is a mobile component of the electron transport chain (ETC.) which contains a tightly coordinated heme iron. In pathologic settings, a key ligand of the cyt c's heme iron, methionine (Met80), is oxidized allowing cyt c to participate in reactions as a peroxidase with cardiolipin as a target. Myocardial ischemia (ISC) results in ETC. blockade and increased production of reactive oxygen species (ROS). We hypothesized that during ischemia–reperfusion (ISC-REP); ROS generation coupled with electron flow into cyt c would oxidize Met80 and contribute to mitochondrial-mediated ETC. damage.

Methods

Mitochondria were incubated with specific substrates and inhibitors to test the contributions of ROS and electron flow into cyt c. Subsequently, cyt c and cardiolipin were analyzed. To test the pathophysiologic relevance, mouse hearts that underwent ISC-REP were tested for methionine oxidation in cyt c.

Results

The combination of substrate/inhibitor showed that ROS production and electron flux through cyt c are essential for the oxidation of methionine residues that lead to cardiolipin depletion. The content of cyt c methionine oxidation increases following ISC-REP in the intact heart.

Conclusions

Increase in intra-mitochondrial ROS coupled with electron flow into cyt c, oxidizes cyt c followed by depletion of cardiolipin. ISC-REP increases methionine oxidation, supporting that cyt c peroxidase activity can form in the intact heart.

General significance

This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.  相似文献   

8.
We have used imidazole (Im) and N-methylimidazole (MeIm) as probes of the heme-binding cavity of membrane-bound cytochrome (cyt) c1 in detergent-solubilized bc1 complex from Rhodobacter sphaeroides. Imidazole binding to cyt c1 substantially lowers the midpoint potential of the heme and fully inhibits bc1 complex activity. Temperature dependences showed that binding of Im (Kd ≈ 330 μm, 25 °C, pH 8) is enthalpically driven (ΔH0 = −56 kJ/mol, ΔS0 = −121 J/mol/K), whereas binding of MeIm is 30 times weaker (Kd ≈ 9.3 mm) and is entropically driven (ΔH0 = 47 kJ/mol, ΔS0° = 197 J/mol/K). The large enthalpic and entropic contributions suggest significant structural and solvation changes in cyt c1 triggered by ligand binding. Comparison of these results with those obtained previously for soluble cyts c and c2 suggested that Im binding to cyt c1 is assisted by formation of hydrogen bonds within the heme cleft. This was strongly supported by molecular dynamics simulations of Im adducts of cyts c, c2, and c1, which showed hydrogen bonds formed between the NδH of Im and the cyt c1 protein, or with a water molecule sequestered with the ligand in the heme cleft.  相似文献   

9.
The bacterial heme protein cytochrome ? from Alcaligenes xylosoxidans (AXCP) reacts with nitric oxide (NO) to form a 5-coordinate ferrous nitrosyl heme complex. The crystal structure of ferrous nitrosyl AXCP has previously revealed that NO is bound in an unprecedented manner on the proximal side of the heme. To understand how the protein structure of AXCP controls NO dynamics, we performed absorption and Raman time-resolved studies at the heme level as well as a molecular computational dynamics study at the entire protein structure level. We found that after NO dissociation from the heme iron, the structure of the proximal heme pocket of AXCP confines NO close to the iron so that an ultrafast (7 ps) and complete (99 +/- 1%) geminate rebinding occurs, whereas the proximal histidine does not rebind to the heme iron on the timescale of NO geminate rebinding. The distal side controls the initial NO binding, whereas the proximal heme pocket controls its release. These dynamic properties allow the trapping of NO within the protein core and represent an extreme behavior observed among heme proteins.  相似文献   

10.
Resonance energy transfer (RET) from anthrylvinyl-labeled phosphatidylcholine (AV-PC) or cardiolipin (AV-CL) to cytochrome c (cyt c) heme moiety was employed to assess the molecular-level details of protein interactions with lipid bilayers composed of PC with 2.5 (CL2.5), 5 (CL5), 10 (CL10), or 20 (CL20) mol % CL under conditions of varying ionic strength and lipid/protein molar ratio. Monte Carlo analysis of multiple data sets revealed a subtle interplay between 1), exchange of the neutral and acidic lipid in the protein-lipid interaction zone; 2), CL transition into the extended conformation; and 3), formation of the hexagonal phase. The switch between these states was found to be controlled by CL content and salt concentration. At ionic strengths ≥40 mM, lipid bilayers with CL fraction not exceeding 5 mol % exhibited the tendency to transform from lamellar to hexagonal phase upon cyt c adsorption, whereas at higher contents of CL, transition into the extended conformation seems to become thermodynamically favorable. At lower ionic strengths, deviations from homogeneous lipid distributions were observed only for model membranes containing 2.5 mol % CL, suggesting the existence of a certain surface potential critical for assembly of lipid lateral domains in protein-lipid systems that may subsequently undergo morphological transformations depending on ambient conditions. These characteristics of cyt c-CL interaction are of great interest, not only from the viewpoint of regulating cyt c electron transfer and apoptotic propensities, but also to elucidate the general mechanisms by which membrane functional activities can be modulated by protein-lipid interactions.  相似文献   

11.
The increased production of NO during the early stages of apoptosis indicates its potential involvement in the regulation of programmed cell death through yet to be identified mechanisms. Recently, an important role for catalytically competent peroxidase form of pentacoordinate cytochrome c (cyt c) in a complex with a mitochondria-specific phospholipid, cardiolipin (CL), has been demonstrated during execution of the apoptotic program. Because the cyt c.CL complex acts as CL oxygenase and selectively oxidizes CL in apoptotic cells in a reaction dependent on the generation of protein-derived (tyrosyl) radicals, we hypothesized that binding and nitrosylation of cyt c regulates CL oxidation. Here we demonstrate by low temperature electron paramagnetic resonance spectroscopy that CL facilitated interactions of ferro- and ferri-states of cyt c with NO and NO(-), respectively, to yield a mixture of penta- and hexa-coordinate nitrosylated cyt c. In the nitrosylated cyt c.CL complex, NO chemically reacted with H(2)O(2)-activated peroxidase intermediates resulting in their reduction. A dose-dependent quenching of H(2)O(2)-induced protein-derived radicals by NO donors was shown using direct electron paramagnetic resonance measurements as well as immuno-spin trapping with antibodies against protein 5,5-dimethyl-1-pyrroline N-oxide-nitrone adducts. In the presence of NO donors, H(2)O(2)-induced oligomeric forms of cyt c positively stained for 3-nitrotyrosine confirming the reactivity of NO toward tyrosyl radicals of cyt c. Interaction of NO with the cyt c.CL complex inhibited its peroxidase activity with three different substrates: CL, etoposide, and 3,3'-diaminobenzidine. Given the importance of CL oxidation in apoptosis, mass spectrometry analysis was utilized to assess the effects of NO on oxidation of 1,1'2,2'-tertalinoleoyl cardiolipin. NO effectively inhibited 1,1'2,2'-tertalinoleoyl cardiolipin oxidation catalyzed by the peroxidase activity of cyt c. Thus, NO can act as a regulator of peroxidase activity of cyt c.CL complexes.  相似文献   

12.
Ruth Hielscher  Carola Hunte  Petra Hellwig 《BBA》2009,1787(6):617-7786
Biochemical studies have shown that cardiolipin is essential for the integrity and activity of the cytochrome bc1 complex and many other membrane proteins. Recently the direct involvement of a bound cardiolipin molecule (CL) for proton uptake at center N, the site of quinone reduction, was suggested on the basis of a crystallographic study. In the study presented here, we probe the low frequency infrared spectroscopy region as a technique suitable to detect the involvement of the lipids in redox induced reactions of the protein. First the individual infrared spectroscopic features of lipids, typically present in the yeast membrane, have been monitored for different pH values in micelles and vesicles. The pKa values for cardiolipin molecule have been observed at 4.7 ± 0.3 and 7.9 ± 1.3, respectively. Lipid contributions in the electrochemically induced FTIR spectra of the bc1 complex from yeast have been identified by comparing the spectra of the as isolated form, with samples where the lipids were digested by lipase-A2. Overall, a noteworthy perturbation in the spectral region typical for the protein backbone can be reported. Interestingly, signals at 1159, 1113, 1039 and 980 cm− 1 have shifted, indicating the perturbation of the protonation state of cardiolipin coupled to the reduction of the hemes. Additional shifts are found and are proposed to reflect lipids reorganizing due to a change in their direct environment upon the redox reaction of the hemes. In addition a small shift in the alpha band from 559 to 556 nm can be seen after lipid depletion, reflecting the interaction with heme bH and heme c. Thus, our work highlights the role of lipids in enzyme reactivity and structure.  相似文献   

13.
The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.  相似文献   

14.
The release of cytochrome c (cyt c) from mitochondria is an important early step during cellular apoptosis, however the precise mechanism by which the outer mitochondrial membrane becomes permeable to these proteins is as yet unclear. Inspired by our previous observation of cyt c crossing the membrane barrier of giant unilamellar vesicle model systems, we investigate the interaction of cyt c with cardiolipin (CL)-containing membranes using the innovative droplet bilayer system that permits electrochemical measurements with simultaneous microscopy observation. We find that cyt c can permeabilize CL-containing membranes by induction of lipid pores in a dose-dependent manner, with membrane lysis eventually observed at relatively high (µM) cyt c concentrations due to widespread pore formation in the membrane destabilizing its bilayer structure. Surprisingly, as cyt c concentration is further increased, we find a regime with exceptionally high permeability where a stable membrane barrier is still maintained between droplet compartments. This unusual non-lytic state has a long lifetime (>20 h) and can be reversibly formed by mechanically separating the droplets before reforming the contact area between them. The transitions between behavioural regimes are electrostatically driven, demonstrated by their suppression with increasing ionic concentrations and their dependence on CL composition. While membrane permeability could also be induced by cationic PAMAM dendrimers, the non-lytic, highly permeable membrane state could not be reproduced using these synthetic polymers, indicating that details in the structure of cyt c beyond simply possessing a cationic net charge are important for the emergence of this unconventional membrane state. These unexpected findings may hold significance for the mechanism by which cyt c escapes into the cytosol of cells during apoptosis.  相似文献   

15.
In brain mitochondria, phosphate- and Ca2+-dependent cytocrome c (cyt c) release reveals pools that interact differently with the inner membrane. Detachment of the phosphate-dependent pool did not influence the pool released by Ca2+. Cyt c pools were also detected in a system of cyt c reconstituted in cardiolipin (CL) liposomes. Gradual binding of cyt c (1 nmol) to CL/2–[12-(7-nitrobenz- 2-oxa-1,3-diazol-4-yl)amino]dodecanoyl-1-hexadecan oyl-sn-glycero-3-phosphocholine (NBDC12-HPC) liposomes (10 nmol) produced NBD fluorescence quenching up to 0.4 nmol of added protein. Additional bound cyt c did not produce quenching, suggesting that cyt c-CL interactions originate distinct cyt c pools. Cyt c was removed from CL/NBDC12-HPC liposomes by either phosphate or Ca2+, but only Ca2+ produced fluorescence dequenching and leakage of encapsulated 8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis-pyridinium bromide. In mitochondria, complex IV activity and mitochondrial membrane potential (Δψm) were not affected by the release of the phosphate-dependent cyt c pool. Conversely, removal of cyt c by Ca2+ caused inhibition of complex IV activity and impairment of Δψm. In a reconstituted system of mitochondria, nuclei and supernatant, cyt c detached from the inner membrane was released outside mitochondria and triggered events leading to DNA fragmentation. These events were prevented by enriching mitochondria with exogenous CL or by sequestering released cyt c with anti-cyt c antibody.  相似文献   

16.
The catalytic activity of cytochrome c (cyt c) to peroxidize cardiolipin to its oxidized form is required for the release of pro-apoptotic factors from mitochondria, and for execution of the subsequent apoptotic steps. However, the structural basis for this peroxidation reaction remains unclear. In this paper, we determined the three-dimensional NMR solution structure of yeast cyt c Y67H variant with high peroxidase activity, which is almost similar to that of its native form. The structure reveals that the hydrogen bond between Met80 and residue 67 is disrupted. This change destabilizes the sixth coordination bond between heme Fe3+ ion and Met80 sulfur atom in the Y67H variant, and further makes it more easily be broken at low pH conditions. The steady-state studies indicate that the Y67H variant has the highest peroxidase activities when pH condition is between 4.0 and 5.2. Finally, a mechanism is suggested for the peroxidation of cardiolipin catalyzed by the Y67H variant, where the residue His67 acts as a distal histidine, its protonation facilitates O-O bond cleavage of H2O2 by functioning as an acidic catalyst.  相似文献   

17.
Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does not catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (kon) is (3.2 ± 0.4) × 105 M−1 s−1. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 ± 0.8) × 10−5 M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.  相似文献   

18.
While many studies have focused on cytochrome c release from mitochondria, little attention has been given to the specific interaction between cardiolipin (CL) and cytochrome c, the breaching of which likely represents a critical event in the initiation of mitochondrially mediated apoptosis. Mounting evidence suggests that a decrease in the level of CL affects cytochrome c binding to the inner membrane, thus leading to higher levels of soluble cytochrome c in the mitochondrial intermembrane space. Among the factors known to affect CL levels are thyroid status, plasma concentrations of free fatty acids, Ca2+ dysregulation, and reactive oxygen species (ROS). These factors, especially Ca2+ and ROS, have long been recognized as triggers of cell death and, more recently, as modulators of mitochondrially mediated apoptosis. In this review, we discuss the significance of the disruption of the CL-cytochrome c interaction for cytochrome c release and apoptosis.  相似文献   

19.
Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M−1 s−1 and 0.34 ± 0.15 s−1, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min−1 at pH 6.0.  相似文献   

20.
Miniature bilayer membranes comprised of phospholipid and an apolipoprotein scaffold, termed nanodisks (ND), have been used in binding studies. When ND formulated with cardiolipin (CL), but not phosphatidylcholine, were incubated with cytochrome c, FPLC gel filtration chromatography provided evidence of a stable binding interaction. Incubation of CL ND with CaCl2 resulted in a concentration-dependent increase in sample turbidity caused by ND particle disruption. Prior incubation of CL ND with cytochrome c increased CL ND sensitivity to CaCl2-induced effects. Centrifugation of CaCl2-treated CL ND samples yielded pellet and supernatant fractions. Whereas the ND scaffold protein, apolipophorin III, was recovered in the pellet fraction along with CL, the majority of the cytochrome c pool was in the supernatant fraction. Moreover, when cytochrome c CL ND were incubated with CaCl2 at concentrations below the threshold to induce ND particle disruption, FPLC analysis showed that cytochrome c was released. Pre-incubation of CL ND with CaCl2 under conditions that do not disrupt ND particle integrity prevented cytochrome c binding to CL ND. Thus, competition between Ca2+ and cytochrome c for a common binding site on CL modulates cytochrome c binding and likely plays a role in its dissociation from CL-rich cristae membranes in response to apoptotic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号