首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Translation of influenza A virus PB1-F2 occurs in a second open reading frame (ORF) of the PB1 gene segment. PB1-F2 has been implicated in regulation of polymerase activity, immunopathology, susceptibility to secondary bacterial infection, and induction of apoptosis. Experimental evidence of PB1-F2 molecular function during infection has been collected primarily from human and avian viral isolates. As the 2009 H1N1 (H1N1pdm09) strain highlighted, some swine-derived influenza viruses have the capacity to infect human hosts and emerge as a pandemic. Understanding the impact that virulence factors from swine isolates have on both human and swine health could aid in early identification of viruses with pandemic potential. Studies examining PB1-F2 from swine isolates have focused primarily on H1N1pdm09, which does not encode PB1-F2 but was engineered to carry a full-length PB1-F2 ORF to assess the impact on viral replication and pathogenicity. However, experimental evidence of PB1-F2 protein expression from swine lineage viruses has not been demonstrated. Here, we reveal that during infection, PB1-F2 expression levels are substantially different in swine and human influenza viruses. We provide evidence that PB1-F2 expression is regulated at the translational level, with very low levels of PB1-F2 expression from swine lineage viruses relative to a human isolate PB1-F2. Translational regulation of PB1-F2 expression was partially mapped to two independent regions within the PB1 mRNA, located downstream of the PB1-F2 start site. Our data suggest that carrying a full-length PB1-F2 ORF may not be predictive of PB1-F2 expression in infected cells for all influenza A viruses.  相似文献   

3.
PB1-F2 is a small accessory protein encoded by an alternative open reading frame in PB1 segments of most influenza A virus. PB1-F2 is involved in virulence by inducing mitochondria-mediated immune cells apoptosis, increasing inflammation, and enhancing predisposition to secondary bacterial infections. Using biophysical approaches we characterized membrane disruptive activity of the full-length PB1-F2 (90 amino acids), its N-terminal domain (52 amino acids), expressed by currently circulating H1N1 viruses, and its C-terminal domain (38 amino acids). Both full-length and N-terminal domain of PB1-F2 are soluble at pH values ≤6, whereas the C-terminal fragment was found soluble only at pH ≤ 3. All three peptides are intrinsically disordered. At pH ≥ 7, the C-terminal part of PB1-F2 spontaneously switches to amyloid oligomers, whereas full-length and the N-terminal domain of PB1-F2 aggregate to amorphous structures. When incubated with anionic liposomes at pH 5, full-length and the C-terminal part of PB1-F2 assemble into amyloid structures and disrupt membrane at nanomolar concentrations. PB1-F2 and its C-terminal exhibit no significant antimicrobial activity. When added in the culture medium of mammalian cells, PB1-F2 amorphous aggregates show no cytotoxicity, whereas PB1-F2 pre-assembled into amyloid oligomers or fragmented nanoscaled fibrils was highly cytotoxic. Furthermore, the formation of PB1-F2 amyloid oligomers in infected cells was directly reflected by membrane disruption and cell death as observed in U937 and A549 cells. Altogether our results demonstrate that membrane-lytic activity of PB1-F2 is closely linked to supramolecular organization of the protein.  相似文献   

4.
The aim of the present study was to identify what influences the short half-life of the influenza A virus PB1-F2 protein and whether a prolonged half-life affects the properties of this molecule. We hypothesized that the short half-life of PB1-F2 could conceal the phenotype of the protein. Because proteasome degradation might be involved in PB1-F2 degradation, we focused on ubiquitination, a common label for proteasome targeting. A cluster of lysine residues was demonstrated as an ubiquitination acceptor site in evolutionary and functionally distinct proteins. The PB1-F2 sequence alignment revealed a cluster of lysines on the carboxy terminal end of PB1-F2 in almost all of the GenBank sequences available to date. Using a proximity ligation assay, we identified ubiquitination as a novel posttranslational modification of PB1-F2. Changing the lysines at positions 73, 78, and 85 to arginines suppressed the ubiquitination of A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. The mutation of the C-terminal lysine residue cluster positively affected the overall expression levels of avian A/Honk Kong/156/1997 (H5N1)- and mammalian A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. Moreover, increased PB1-F2 copy numbers strengthened the functions of this virus in the infected cells. The results of a minigenome luciferase reporter assay revealed an enhancement of viral RNA-dependent RNA polymerase activity in the presence of stabilized PB1-F2, regardless of viral origin. IFNβ antagonism was enhanced in 293T cells transfected with a plasmid expressing stabilized K→R mutant variants of PB1-F2. Compared with PB1-F2 wt, the loss of ubiquitination enhanced the antibody response after DNA vaccination. In summary, we revealed that PB1-F2 is an ubiquitinated IAV protein, and this posttranslational modification plays a central role in the regulation of the biological functions of this protein.  相似文献   

5.
Influenza A virus (IAV) generally causes caspase-dependent apoptosis based on caspase-3 activation, resulting in nuclear export of newly synthesized viral nucleoprotein (NP) and elevated virus replication. Sulfatide, a sulfated galactosylsphingolipid, enhances IAV replication through promoting newly synthesized viral NP export induced by association of sulfatide with hemagglutinin delivered to the cell surface. Here, we demonstrated that sulfatide is involved in caspase-3-independent apoptosis initiated by the PB1-F2 protein of IAV by using genetically sulfatide-produced cells and PB1-F2-deficient IAVs. Sulfatide-deficient COS7 cells showed no virus-induced apoptosis, whereas SulCOS1 cells, sulfatide-enriched COS7 cells that genetically expressed the two transferases required for sulfatide synthesis from ceramide, showed an increase in IAV replication and were susceptible to caspase-3-independent apoptosis. Additionally, PB1-F2-deficient IAVs, which were generated by using a plasmid-based reverse genetics system from a genetic background of A/WSN/33 (H1N1), demonstrated that PB1-F2 contributed to caspase-3-independent apoptosis in IAV-infected SulCOS1 cells. Our results show that sulfatide plays a critical role in efficient IAV propagation via caspase-3-independent apoptosis initiated by the PB1-F2 protein.  相似文献   

6.
为体外验证流感病毒PB1-F2与热休克蛋白Hsp40相互作用,通过两个方向的GST pull-down试验验证PB1-F2与Hsp40的相互作用。构建GST-多肽融合蛋白原核表达载体pGEX-6P-1-PB1-F2和pGEX-6P-1-Hsp40,并在大肠杆菌(E.co-li)BL21中诱导表达;构建真核表达载体pLEGFP-Hsp40及pCAGGS-PB1-F2,并分别转染293T细胞使其表达Hsp40及PB1-F2融合蛋白,然后进行GST pull-down试验验证二者的相互作用。成功地构建了两种蛋白的各种表达载体,经表达、纯化获得了可溶性的GST-多肽融合蛋白,GST pull-down试验正反两方向都证实了PB1-F2与Hsp40的相互作用,初步证实了流感病毒PB1-F2在体外能与Hsp40发生相互作用。  相似文献   

7.
The influenza A virus PB1-F2 protein has been implicated as a virulence factor, but the mechanism by which it enhances pathogenicity is not understood. The PB1 gene segment of the H1N1 swine-origin influenza virus pandemic strain codes for a truncated PB1-F2 protein which terminates after 11 amino acids but could acquire the full-length form by mutation or reassortment. It is therefore important to understand the function and impact of this protein. We systematically assessed the effect that PB1-F2 expression has on viral polymerase activity, accumulation and localization of PB1, and replication in vitro and in mice. We used both the laboratory strain PR8 and a set of viruses engineered to study clinically relevant PB1-F2 proteins. PB1-F2 expression had modest effects on polymerase activity, PB1 accumulation, and replication that were cell type and virus strain dependent. Disruption of the PB1-F2 reading frame in a recent, seasonal H3N2 influenza virus strain did not affect these parameters, suggesting that this is not a universal function of the protein. Disruption of PB1-F2 expression in several backgrounds or expression of PB1-F2 from the 1918 pandemic strain or a 1956 H1N1 strain had no effect on viral lung loads in mice. Alternate mechanisms besides alterations to replication are likely responsible for the enhanced virulence in mammalian hosts attributed to PB1-F2 in previous studies.Seasonal influenza is responsible for significant morbidity and mortality worldwide. In the 1990s, it was estimated to kill 36,000 persons annually in the United States alone and 250,000 to 500,000 persons in the developed world, although hospitalization rates and mortality figures varied considerably from season to season based on the circulating strains (19, 20). Influenza A viruses also have the capability to cause a pandemic if they are sufficiently novel. Strains may emerge whole or in part from animal reservoirs and establish long-term (years to decades) zoonotic lineages in humans (23). The most striking example of this phenomenon occurred in 1918, when an avian virus of the H1N1 subtype crossed the species barrier and established related lineages in two mammalian hosts, swine and humans (16). This pandemic is thought to have killed more than 40 million persons worldwide. In 2009, a novel H1N1 influenza virus of swine origin (H1N1 S-OIV) emerged and is now causing the first pandemic the world has seen in more than 40 years (14). Because of the history of pandemic influenza and the current circulation of a novel pandemic strain, there is intense interest and urgency in understanding viral factors that allow expression of disease in humans.One such virulence factor is the influenza A virus protein PB1-F2 (8). This small (87 to 90 amino acids), 11th gene product was discovered in 2001 in a search for CD8+ epitopes in alternative reading frames of influenza A virus genes (2). It is encoded in the +1 reading frame of the PB1 gene segment and is translated from an AUG codon downstream of the PB1 start site, probably accessed through leaky ribosomal scanning. It has been shown to contribute to virulence both directly and indirectly, through modulation of responses to bacteria (3, 11). The exact mechanism(s) through which virulence is increased by PB1-F2 expression, however, is not yet understood. Three effects of PB1-F2 expression have been suggested so far. It has been demonstrated to cause cell death in some cell types (2, 5), it has been shown to induce inflammation by recruitment of inflammatory cells in mice (11), and it has been determined to bind PB1 and to increase the activity of the influenza virus polymerase in vitro (10).The function of the PB1-F2 protein in the life cycle of influenza virus is as unclear as its precise role in virulence. Given that almost all avian influenza virus strains express a full-length PB1-F2 protein (27), it is likely to contribute to survival or transmission in the natural avian host. After introduction of viruses into mammalian hosts such as humans or swine, however, the protein often becomes truncated during adaptation, implying that any effects it might induce are not necessary for virus viability and transmission in these hosts. The 1918 H1N1 virus had a full-length PB1-F2 protein, which has been demonstrated to contribute to virulence in mice (3, 11). During the evolution of H1N1 viruses in humans over time, a stop codon at position 58 in the PB1-F2 amino acid sequence appeared around 1950 and has been retained in the human H1N1 lineage since its reemergence in 1977. Similarly, multiple swine lineages of influenza A virus have had truncations appear at different positions, including position 58, such that 25% of swine PB1-F2 sequences in GenBank lack the C-terminal portion of the protein (27). The H3N2 lineage of viruses in humans has retained a full-length PB1-F2 protein since the introduction of a new PB1 gene segment during the 1968 pandemic, although considerable variation in sequence has occurred during evolution since that time. It is tempting to map these differences in PB1-F2 expression onto patterns of human excess mortality over time, since higher mortality was associated with H1N1 epidemics in the 1930s and 1940s than has been seen since and more excess mortality occurred in recent years with H3N2 viruses than with either H1N1 or influenza B viruses (reviewed in reference 12). Differences in primary virulence or the association with bacteria mediated by PB1-F2 expression could be at least partly responsible for these observed epidemiologic trends.A recent paper from Wise et al. has shown that a 12th influenza A virus gene product, N40, is also expressed from the PB1 gene segment (24). A delicate balance between PB1, PB1-F2, and N40 appears to be in place. Polymerase activity measured by an in vitro assay was affected by changes in this balance, suggesting a potential importance for replication. If these differences translate to differences in replication, then this could be a key factor in virulence in the host. However, to this point, most studies have utilized a single laboratory variant of influenza A virus, A/Puerto Rico/8/34 (H1N1; PR8), in a limited set of cell types, in assays performed in vitro. We undertook this study to determine the relevance of potential changes in replication mediated by PB1-F2 expression, utilizing several different epidemiologically important virus strains. We found that the effects on polymerase activity and in vitro replication efficiency were virus and cell type specific and did not mediate changes in viral lung load in animals.  相似文献   

8.
PB1-F2 is a viral protein that is encoded by the PB1 gene of influenza A virus by alternative translation. It varies in length and sequence context among different strains. The present study examines the functions of PB1-F2 proteins derived from various human and avian viruses. While H1N1 PB1-F2 was found to target mitochondria and enhance apoptosis, H5N1 PB1-F2, surprisingly, did not localize specifically to mitochondria and displayed no ability to enhance apoptosis. Introducing Leu into positions 69 (Q69L) and 75 (H75L) in the C terminus of H5N1 PB1-F2 drove 40.7% of the protein to localize to mitochondria compared with the level of mitochondrial localization of wild-type H5N1 PB1-F2, suggesting that a Leu-rich sequence in the C terminus is important for targeting of mitochondria. However, H5N1 PB1-F2 contributes to viral RNP activity, which is responsible for viral RNA replication. Lastly, although the swine-origin influenza virus (S-OIV) contained a truncated form of PB1-F2 (12 amino acids [aa]), potential mutation in the future may enable it to contain a full-length product. Therefore, the functions of this putative S-OIV PB1-F2 (87 aa) were also investigated. Although this PB1-F2 from the mutated S-OIV shares only 54% amino acid sequence identity with that of seasonal H1N1 virus, it also increased viral RNP activity. The plaque size and growth curve of the viruses with and without S-OIV PB1-F2 differed greatly. The PB1-F2 protein has various lengths, amino acid sequences, cellular localizations, and functions in different strains, which result in strain-specific pathogenicity. Such genetic and functional diversities make it flexible and adaptable in maintaining the optimal replication efficiency and virulence for various strains of influenza A virus.Influenza A viruses contain eight negative-stranded RNA segments that encode 11 known viral proteins. The 11th viral protein was originally found in a search for unknown peptides during influenza A virus infection recognized by CD8+ T cells. It was termed PB1-F2 and is the second protein that is alternatively translated by the same PB1 gene (8). PB1-F2 can be encoded in a large number of influenza A viruses that are isolated from various hosts, including human and avian hosts. The size of PB1-F2 ranges from 57 to 101 amino acids (aa) (41). While strain PR8 (H1N1) contains a PB1-F2 with a length of 87 aa, PB1-F2 is terminated at amino acid position 57 in most human H1N1 viruses and is thus a truncated form compared with the length in PR8. Human H3N2 and most avian influenza A viruses encode a full-length PB1-F2 protein, which is at least 87 aa (7). Many cellular functions of the PB1-F2 protein, and especially the protein of the PR8 strain, have been reported (11, 25). For example, PR8 PB1-F2 localizes to mitochondria in infected and transfected cells (8, 15, 38, 39), suggesting that PB1-F2 enhances influenza A virus-mediated apoptosis in human monocytes (8). The phosphorylation of the PR8 PB1-F2 protein has been suggested to be one of the crucial causes of the promotion of apoptosis (30).The rates of synonymous and nonsynonymous substitutions in the PB1-F2 gene are higher than those in the PB1 gene (7, 20, 21, 37, 42). Recent work has shown that both PR8 PB1-F2 and H5N1 PB1-F2 are important regulators of influenza A virus virulence (1). Additionally, the expression of the 1918 influenza A virus (H1N1) PB1-F2 increases the incidence of secondary bacterial pneumonia (10, 28). However, PB1-F2 is not essential for viral replication because the knockout of PB1-F2 in strain PR8 has no effect on the viral titer (40), suggesting that PB1-F2 may have cellular functions other than those that were originally thought (29).PB1-F2 was translated from the same RNA segment as the PB1 protein, whose function is strongly related to virus RNP activity, which is responsible for RNA chain elongation and which exhibits RNA-dependent RNA polymerase activity (2, 5) and endonuclease activity (9, 16, 26). Previous research has already proved that the knockout of PR8 PB1-F2 reduced virus RNP activity, revealing that PR8 PB1-F2 contributes to virus RNP activity (27), even though PB1-F2 has no effect on the virus growth rate (40). In the present study, not only PR8 PB1-F2 but also H5N1 PB1-F2 and putative full-length swine-origin influenza A virus (S-OIV) PB1-F2 contributed to virus RNP activity. However, PR8 PB1-F2 and H5N1 PB1-F2 exhibit different biological behaviors, including different levels of expression, cellular localizations, and apoptosis enhancements. The molecular determinants of the different localizations were also addressed. The function of the putative PB1-F2 derived from S-OIV was also studied. The investigation described here reveals that PB1-F2 proteins derived from various viral strains exhibited distinct functions, possibly contributing to the variation in the virulence of influenza A viruses.  相似文献   

9.
Influenza A virus PB1-F2: a small protein with a big punch   总被引:1,自引:0,他引:1  
Virulence factors, such as the recently discovered PB1-F2, contribute to the pathogenesis and comorbidity of influenza A virus. In this issue of Cell Host & Microbe, McAuley et al. characterize the role of PB1-F2, including in the pandemic 1918 virus, in causing increased lung pathology and fatal pneumococcus infection in mice. This work sheds light on the mechanisms of pathogenicity during influenza A virus infections.  相似文献   

10.
A combination of viral, bacterial, and host factors contributes to the severity and overall mortality associated with influenza virus-bacterium superinfections. To date, the virulence associated with the recently identified influenza virus protein PB1-F2 has been largely defined using models of primary influenza virus infection, with only limited assessment in models of Streptococcus pneumoniae superinfection. Specifically, these studies have incorporated isogenic viruses that differ in the PB1-F2 expressed, but there is still knowledge to be gained from evaluation of natural variants derived from a nonhuman host species (swine). Using this rationale, we developed the hypothesis that naturally occurring viruses expressing variants of genes, like the PB1-F2 gene, can be associated with the severity of secondary bacterial infections. To test this hypothesis, we selected viruses expressing variants in PB1-F2 and evaluated outcomes from superinfection with three distinct Gram-positive respiratory pathogens: Streptococcus pneumoniae, Staphylococcus aureus, and Streptococcus pyogenes. Our results demonstrate that the amino acid residues 62L, 66S, 75R, 79R, and 82L, previously proposed as molecular signatures of PB1-F2 virulence for influenza viruses in the setting of bacterial superinfection, are broadly associated with enhanced pathogenicity in swine in a bacterium-specific manner. Furthermore, truncated PB1-F2 proteins can preferentially increase mortality when associated with Streptococcus pyogenes superinfection. These findings support efforts to increase influenza virus surveillance to consider viral genotypes that could be used to predict increased severity of superinfections with specific Gram-positive respiratory pathogens.  相似文献   

11.
Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice   总被引:1,自引:0,他引:1  
The influenza virus PB1-F2 protein is a novel protein previously shown to be involved in induction of cell death. Here we characterize the expression and the function of the protein within the context of influenza viral infection in tissue culture and a mouse model. We show that the C-terminal region of the protein can be expressed from a downstream initiation codon and is capable of interaction with the full-length protein. Using this knowledge, we generated influenza viruses knocked out for the expression of PB1-F2 protein and its downstream truncation products. Knocking out the PB1-F2 protein had no effect on viral replication in tissue culture but diminished virus pathogenicity and mortality in mice. The viruses replicated to similar levels in mouse lungs by day 3 postinfection, suggesting that the knockout did not impair viral replication. However, while the PB1-F2 knockout viruses were cleared after day 5, the wild-type viruses were detectable in mouse lungs until day 7, implying that expression of PB1-F2 resulted in delayed clearance of the viruses by the host immune system. Based on our findings and on the fact that the PB1 genomic segment was always newly introduced into some pandemic influenza viruses of the last century, we speculate that the PB1-F2 protein plays an important role in pathogenesis of influenza virus infection and may be an important contributor to pathogenicity of pandemic influenza viruses.  相似文献   

12.
13.
Enhancement of cell death is a distinguishing feature of H1N1 influenza virus A/Puerto Rico/8/34 protein PB1-F2. Comparing the sequences (amino acids [aa] 61 to 87 using PB1-F2 amino acid numbering) of the PB1-F2-derived C-terminal peptides from influenza A viruses inducing high or low levels of cell death, we identified a unique I68, L69, and V70 motif in A/Puerto Rico/8/34 PB1-F2 responsible for promotion of the peptide''s cytotoxicity and permeabilization of the mitochondrial membrane. When administered to mice, a 27-mer PB1-F2-derived C-terminal peptide with this amino acid motif caused significantly greater weight loss and pulmonary inflammation than the peptide without it (due to I68T, L69Q, and V70G mutations). Similar to the wild-type peptide, A/Puerto Rico/8/34 elicited significantly higher levels of macrophages, neutrophils, and cytokines in the bronchoalveolar lavage fluid of mice than its mutant counterpart 7 days after infection. Additionally, infection of mice with A/Puerto Rico/8/34 significantly enhanced the levels of morphologically transformed epithelial and immune mononuclear cells recruited in the airways compared with the mutant virus. In the mouse bacterial superinfection model, both peptide and virus with the I68, L69, and V70 sequence accelerated development of pneumococcal pneumonia, as reflected by increased levels of viral and bacterial lung titers and by greater mortality. Here we provide evidence suggesting that the newly identified cytotoxic sequence I68, L69, and V70 of A/Puerto Rico/8/34 PB1-F2 contributes to the pathogenesis of both primary viral and secondary bacterial infections.  相似文献   

14.
The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian influenza isolates. The structures of full-length PB1-F2 of the influenza strains Pandemic flu 2009 H1N1, 1918 Spanish flu H1N1, Bird flu H5N1 and H1N1 PR8, have been characterized by NMR and CD spectroscopy. The study was conducted using chemically synthesized full-length PB1-F2 protein and fragments thereof. The amino acid residues 30–70 of PR8 PB1-F2 were found to be responsible for amyloid formation of the protein, which could be assigned to formation of β-sheet structures, although α-helices were the only structural features detected under conditions that mimic a membranous environment. At membranous conditions, in which the proteins are found in their most structured state, significant differences become apparent between the PB1-F2 variants investigated. In contrast to Pandemic flu 2009 H1N1 and PR8 PB1-F2, which exhibit a continuous extensive C-terminal α-helix, both Spanish flu H1N1 and Bird flu H5N1 PB1-F2 contain a loop region with residues 66–71 that divides the C-terminus into two shorter helices. The observed structural differences are located to the C-terminal ends of the proteins to which most of the known functions of these proteins have been assigned. A C-terminal helix–loop–helix motif might be a structural signature for PB1-F2 of the highly pathogenic influenza viruses as observed for 1918 Spanish flu H1N1 and Bird flu H5N1 PB1-F2. This signature could indicate the pathological nature of viruses emerging in the future and thus aid in the recognition of these viruses.  相似文献   

15.
16.
17.
18.
PB1-F2 protein, expressed from an alternative reading frame of most influenza A virus (IAV) PB1 segments, may possess specific residues associated with enhanced inflammation (L62, R75, R79, and L82) and cytotoxicity (I68, L69, and V70). These residues were shown to increase the pathogenicity of primary viral and secondary bacterial infections in a mouse model. In contrast to human seasonal influenza strains, virulence-associated residues are present in PB1-F2 proteins from pandemic H1N1 1918, H2N2 1957, and H3N2 1968, and highly pathogenic H5N1 strains, suggesting their contribution to viruses'' pathogenic phenotypes. Non-human influenza strains may act as donors of virulent PB1-F2 proteins. Previously, avian influenza strains were identified as a potential source of inflammatory, but not cytotoxic, PB1-F2 residues. Here, we analyze the frequency of virulence-associated residues in PB1-F2 sequences from IAVs circulating in mammalian species in close contact with humans: pigs, horses, and dogs. All four inflammatory residues were found in PB1-F2 proteins from these viruses. Among cytotoxic residues, I68 was the most common and was especially prevalent in equine and canine IAVs. Historically, PB1-F2 from equine (about 75%) and canine (about 20%) IAVs were most likely to have combinations of the highest numbers of residues associated with inflammation and cytotoxicity, compared to about 7% of swine IAVs. Our analyses show that, in addition to birds, pigs, horses, and dogs are potentially important sources of pathogenic PB1-F2 variants. There is a need for surveillance of IAVs with genetic markers of virulence that may be emerging from these reservoirs in order to improve pandemic preparedness and response.  相似文献   

19.
20.
Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H+ proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号